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XI 

EXECUTIVE SUMMARY 

This report contains most of the two earlier interim reports, together with the most 
recent results. In addition, there are three Appendices: a published paper, an abstract for 
the Geostatistics Congress in 2000, and some new computer programs that have been 
written for this project. The results of applying them will be provided in a possible new 
program of work. A cokriging analysis of Korean temperature data with elevation has 
been done to assess whether the accuracy of estimates of temperature could be 
improved using the elevation. The improvement was small compared with the 
temperature estimates for the USA done previously. The relation between temperature 
and elevation was strong after both variables had been detrended. The maps show 
slight differences as do the validation results. 

A major aim of this project has been to examine the relation between geostatistics and 
wavelet analysis for exploring spatial variation in imagery at different spatial scales and 
data reconstruction. It seems that overall the wavelet analysis provides a more accurate 
method for data reconstruction. However, it is not straightforward because the 
reliability of the restored values when compared with the original data varies over the 
region. Kriging performs less well where there are marked changes in the reflectance 
values and they appear to be non-stationary. Kriging analysis, however, seems to be 
more appropriate for exploring different resolutions of spatial variation that have been 
identified by the variogram. The variogram could be used to make the wavelet analysis 
for different resolutions more efficient because the relevant scales could be targeted at 
the outset. The results show that similar patterns of variation were retrieved by both 
analyses for the long range/low frequency component. 

A detailed analysis of ground cover at A. P. Hill has been done on the information from 
three surveys (another survey was described in a previous report). The results show a 
relation between the scales of variation in certain ground cover attributes and the SPOT 
data: in particular grass, mixed woodland, forest and wetland. The multivariate 
variograms of the quantitative data and the categorical data confirm a relation between 
NIR and ground cover in terms of the spatial scales identified. Cross variograms 
between the ground cover types and also between each type and each waveband suggest 
that there are spatial relations among variables and the image data. 

The analysis of the elevation data shows that the patterns in its variation correspond 
closely with those for the NIR waveband. These results confirm our earlier 
interpretation, in the previous project, that the observed changes in the long-scale 
component of the variation coincides with changes in the physiography. The raw data 
and detrended data were analysed, but there was little difference between the results. 
Visually the relation between elevation and NBR. is very strong, but it is more difficult to 
show this statistically. 



PART I: REPORT ON TIME SPENT WITH TEC PERSONNEL 

This report embraces several different components and includes the material in the 
previous interim reports. It begins with a brief summary of the work that was done by Dr 
Oliver at TEC in February 1998 which was part of this contract (albeit slightly premature) 
and July 1999, and the work done while E. Bosch and E. Shine were working with Dr 
Oliver at Reading in September 1998 and May 1999, respectively. Part H of the report is a 
small piece of work for Dr Krause on cokriging, Part HI focuses on a comparison between 
wavelet analysis and geostatistics, Part IV on the vegetation surveys and analysis of the 
digital elevation model for A. P. Hill. There are three appendices to the report. The first is 
a copy of the paper presented by Dr Oliver at the Geoenv'98 conference in Valencia last 
year, and which has subsequently been published (Oliver et al, 1999). The second is the 
abstract submitted to the Geostatistics Congress, and the third a set of computer programs 
written by Professor Richard Webster to compute moving variograms, and moving 
averages and variances. These will be tested in the next phase of the work. 

The work for the majority of this project has been based at Fort A. P. Hill in northeastern 
Virginia, about 75 miles from Washington, DC. The area is intensely dissected by many 
small waterways, and this appears to have contributed to the pattern of variation observed 
in the image. 

Report of visit to TEC in February 1998 

Much of the first day at TEC was spent discussing the results of the first analyses from 
Fort A. P. Hill, and what other work should be done. In addition the paper that has now 
been accepted by the International Journal of Remote Sensing was also discussed and 
suggestions for improvement considered and incorporated. Since Dr Oliver was to brief 
the senior management team at TEC including Dr Roper the contents of the briefing were 
also ratified at the outset. A further paper on this subject was considered for presentation 
at the Geoenv'98 conference in Valencia (Oliver et al. 1999) and this has now been 
published. (Appendix 1). 

The main aim of this visit was to work with Jim Shine to enable him to make full use of 
Genstat. A set of programs was prepared to cover exploratory data analysis (histograms, 
box plots, summary statistics, trend detection and so on), variogram analysis and modelling 
and kriging. All of the programs were examined. They were eventually compiled as part 
of the aide memoire that formed an Appendix of the final report for the previous contract 
(Contract N68171-97-C-9029). 

Jim Shine and Dr Oliver worked though all of the programs. A problem was identified 
with the kriging algorithm in Genstat which was eventually reported to the NAG library 
and corrected. TEC then received a new implementation of the package. At least half of 
the time at TEC was spent instructing Jim in the use of the programs and interpreting the 
results. In addition we had several discussions on geostatistics. 

Haifa day was spent on the briefing to Dr Roper and senior staff at TEC, and in answering 
questions arising from this. During the course of our collaboration we have covered a 
substantial amount of work and much of it was described briefly at this meeting. Dr Roper 



showed considerable interest in what has been done and when he visited the University of 
Reading in November 1998 it was clear that he had a sound appreciation of the value of 
geostatistical analysis. The discussion that followed the briefing was stimulating and well 
considered. 

Other discussions were held with Edward Bosch about comparing wavelets and 
geostatistics. This culminated with an arrangement for him to visit Reading in September 
1998. 

Visit by E. Bosch to University of Reading September 1998 

Dr Oliver and E. Bosch worked together for a week. The time was used for analyses, 
interpreting results and discussion. Several analyses were undertaken - some of which 
feature in the report. Others have been done by both of us subsequently. The visit was very 
profitable to both of us. As a result of this investigation we have submitted an abstract to 
the Geostatistics Congress to be held in April 2000, and this has now been accepted for 
presentation and publication. The appendix is appended at the end of the report. The paper 
will acknowledge the support of US Army and of TEC in this work, and will be authored 
jointly by M. A. Oliver, E. Bosch and K. Slocum. 

Visit by James Shine to University of Reading May 1999 

Dr Oliver and Mr Shine worked together for a week in May 1999 when Mr Shine visited 
the University of Reading. This time was used for analyses, a draft outline of a proposed 
paper and discussion. Mr Shine wished to go over the analysis for computing the 
variogram from large sets of data. We experimented with some of the 1-m data for A. P. 
Hill using the program ggrid3.f, written for the project by Professor R. Webster. Mr Shine 
wanted to develop his experience in this so that he can compute variograms from large data 
sets within a short time. He left reading feeling confident about this. In addition we also 
fitted models to the variograms with Genstat and again this reinforced what we did 
together at TEC last year. 

A considerable part of the week was spent discussing the results from the final report of 
contract No. N68171-97-C-9029 which we now wish to publish. We examined previous 
issues of the Internationaljournal of Remote Sensing to see whether this was suitable for 
this work. We decided that it was, but that as the content will be small compared with the 
previous paper we shall submit it as a Letter. This is confusing because this form of 
publication is a short paper in essence and will suit our needs perfectly in this instance. An 
outline of the paper has been prepared and the introduction written. We shall continue with 
this when Dr Oliver visits TEC in July. 

The remaining time was spent discussing the recent work on the ground survey data. Part 
of this work is included in this report. However, there is still some way to go on this. We 
also discussed future work. One idea is to compute a moving variogram to deal with the 
problems of local trends or non-stationarity in the data. This arises at A. P. Hill for 



example where there are water bodies and areas of hard standing and buildings. The 
computer code for this will be written as part of the current contract, but any testing of it 
will have to be done in the future. 

Report of visit to TEC in July 1999 

Dr Oliver visited TEC in July 1999 for three days. On arriving she gave a short briefing to 
Mr W. Clarke (head of section) on the status of our current research, how this builds on 
work done in the past and where any future research is likely to develop. On the second 
day Dr Oliver had a meeting with Dr Roper together with Mr Shine. This was to discuss 
present work and also spatial investigations more generally. Dr Roper invited Dr Oliver to 
give a general briefing to TEC next year on the research to date. 

Part of each day was spent with Mr E. Bosch. We have been exploring a one-dimensional 
set of radon values in soil where we know there are distinct boundaries. The aim is to see 
how wavelet analysis deals with this variation and also that of the residuals from the 
geological classes. We explored different levels of resolution for the raw data. This work is 
still to be completed. 

The work with Mr Shine began by extracting part of the data from the SPOT image and the 
digital elevation model (DEM). We plan to explore the relations in this smaller file in more 
detail because statistically the relation between the wavebands and the DEM was weak, yet 
it was fairly strong for the MR band visually. The weak relation might arise from the areas 
of hard standing and buildings which have no particular relation with the elevation. The 
program ggridf would not work with these small files - Mr Shine has since discovered that 
the zero origin has caused part of the problem. 

We continued the discussion about the Letter for IJRS and have decided to use NDVI of 
subsets from the whole site covered by the 1 m data. The additional work to prepare the 
new variograms for this has now been completed. 



PartH 

Cokriging temperature data in Korea 

The data for the analysis were provided by Dr P. Krause. They comprised temperature and 
elevation records at 100 sites irregularly scattered over Korea. In addition elevation had 
been measured at another 565 sites. Table 1 gives the summary statistics for these variables 
at places where they were both measured. Both have distributions that depart from 
normality, in particular. Although a geostatistical analysis does not assume that the data are 
normally distributed it is generally advisable to transform the data to a near-normal 
distribution for the variogram analysis to stabilize the variances. 

Both variables were transformed to common logarithms and for elevation the skewness 
decreased markedly and the transformed data are close to normal. Temperature departs less 
so from a normal distribution, but after transformation to common logarithms the departure 
from normality increases. 

Table 1: Summary statistics for Elevation and Temperature 

Elevation Temperature Log Elevation Log Temperature 
Number of observations 100 100 100 100 
Mean 403.45 53.02 5.17 3.97 
Minimum 8.00 33.00 2.08 3.50 
Maximum 4546.00 62.00 8.42 4.13 
Variance 574928.23 24.95 1.53 0.011 
Standard deviation 758.24 4.99 1.24 0.103 
Skewness 3.836 -1.45 0.21 -1.93 

The data were also examined for trend as part of the exploratory data analysis. This would 
generally be normal practice when one of the variables is elevation because it can vary in a 
predictable way. However, in this case it was temperature not elevation whose variation 
comprised a large element of trend. For elevation linear trend counted for 13.8% of the 
variation, and quadratic trend for 21.0%. This is much less than expected. It is marginal as 
to whether this degree of trend should be removed, but it was to ensure that the analysis 
was reliable. For temperature the trend was much greater: a linear trend accounted for 
74.9% of the variation and the quadratic one 77.9%. Clearly a linear trend model is 
adequate for describing the trend for temperature. 

The aim of this analysis was to assess whether temperature could be estimated more reliably 
with the use of additional information from elevation. In geostatistics the method used is 
known as cokriging. The value of the method is that it can be used to estimate a property 
that is more expensive to measure using information from another variable with which it is 
coregionalized and that is cheaper to measure or that does not change with time. This is 
particularly true in general for temperature and elevation. There is a physical reason for their 
relation and elevation does not change substantially in the short term. Therefore, once a 
digital elevation model has been produced it is a source of inexpensive and reliable 



information. Cokriging depends on the two (or more) variables being strongly correlated. 
From the correlation matrix below it is clear that the correlation between elevation and 
temperature is moderate. 

Table 2: Correlation matrix for temperature and elevation in Korea. 

*** Correlation matrix *** 

Elevation 1     1.000 
Temperature 2   -0.741 1.000 

1     2 

This level of correlation would suggest that it is worthwhile pursuing a coregionalization 
analysis. The classical correlation coefficient does not take spatial location into account, 
therefore the relation spatially could be either better or worse. 

Cokriging: Theory 

The cross variogram 

This is the logical extension of ordinary kriging to situations where two or more variables 
are spatially interdependent or co-regionalized. The first stage is to model the 
coregionalization. The two regionalized variables, Zw(x) and Zv(x), denoted by u and v, 
both have an autovariogram defined by: 

r„(h) = |E[{Zu(x)-Z„(x + h)}2] 

and 

rv(h) = iE[{Zv(x)-Zv(x + h)}2], 

and a cross variogram defined as: 

ruv(h) = |E[{Z„(x)-Za(x + h)}{Zv(x)-Zv(x + h)}]. 

The cross variogram function describes the way in which u is related spatially to v. 
Provided that there are sites where both properties have been measured yMV(h) can be 
estimated by: 

1        m(h) 

^v(h) = ^-777Z[{^«-^(^ + h)}{zv(x)-zv(x + h)}]. 
2m(h) ,=1 

which provides the experimental cross variogram for u and v. 



The cross variogram can be modelled in the same way as the autovariogram, based on the 
linear model of coregionalization. Each variable is assumed to be a linear sum of 
orthogonal random variables 7(x): 

z.(*)=ii*ii?oo+A. 
k=\ j=\ 

in which 

E[Zu(x)]=/4,. 

^E[{r/(x)-F/(x+h)}{r/(x)-y/(x+h)>] 

= Sk (h)>   positive for k - k' andj = f 

= 0   otherwise 

The variogram for any pair of variables u and v is: 

k=1 j=\ 

We can replace the products in the second summation by bk
m to obtain: 

k=\ 

The &*v
are tne nuSget and sil1 variances of the independent components if they are 

bounded, and for unbounded models they are the nugget variances and gradients. 

Cokriging 

Once to coregionalization has been modelled it can be used to predict the spatial relations 
between two or more variables by cokriging. There are generally two reasons for using 
cokriging: 

1. Where one variable is under-sampled compared with another with which it is 
correlated. The sparsely sampled property can be estimated with greater 
precision by co-kriging because the spatial information from the more intensely 
measured one is used in the estimation. The increase in precision depends on the 
degree of under-sampling and the strength of the coregionalization. 

2. When values of all of the variables are known at all sample points, cokriging can 
improve the coherence between the estimated values by taking account of the 
relation between them. 



If there are V variables, / = 1,2,..., V, and the one to be predicted is u, which in our case 
has been less densely sampled than the others. In ordinary cokriging the estimate is the 
linear sum: 

V    n, 

/=1 i=l 
z.(*)=ZZw*,x 

where the subscript /refers to the variables, of which there are V, and the subscript /' refers 
to the sites, of which there are «/ where the variable / has been measured. The 
Xa are the weights, satisfying: 

i 
1=1 1=1 

•1 -1 

24/=1»   l = u>   and     2^=°»     l*u- 

These are the non-bias conditions, and subject to them the estimation variance of 
Zu (B) for a block, B, is minimized by solving equations : 

ZZVwO,-,X;) + Vv = fuv(*j,B) for all v=l,2 to Fand all/=l,2 to nv. 
i=\ i=i 

The quantity yiv(xj, xj) is the cross semivariance between variables / and v at sites i andj, 
separated by the vector xr x/, ^(x^.,5) is the average cross semivariance between a site j 

and the block B, and \\iv is the Lagrange multiplier for the vth variable. The cokriging 
variance is obtained from: 

V    n, 

II 
/=1  i=l 

°l(B) = SZ^-^.5) + V. -fuu(B,B) 

where yuu (B,B) is the integral of yuu (h) over B, i.e. the within-block variance of«. 

Analysis and results of cokriging 

Cross variogram 

The experimental autovariograms for the raw values of elevation and temperature were 
computed first. They showed some similarity in their shapes and also ranges of spatial 
dependence (Figure 1). The autovariograms were then computed on the residuals from the 
linear trend for temperature and on the residuals from the quadratic trend for elevation. In 
addition the elevation was transformed to common logarithms and the variogram was also 
computed from the transformed data. Considering that the level of skewness is substantial 



reducing it appears to have had little effect on the variogram. In fact it is less clearly 
bounded and less related to the variogram of temperature than that for the raw data. The 
variograms computed from the residuals were more erratic and more difficult to model 
than those of the raw data. Since the trend appears to be regional in the case of 
temperature, at the longer lags, I decided to do the analysis on the raw data and the 
residuals. For kriging it is the first few lags that are important and these are less likely to be 
affected by the trend than the longer lags. 

Although it is important to check the data in this way, the changes did not appear to 
improve the variogram substantially. This will become evident when the cokriging results 
are discussed. However, cokriging was carried out on the raw data and the detrended data. 
During the remaining time on the project I might do some further tests, but I do not expect 
any major changes. 

The experimental auto- and cross-variograms for the raw data are given in Figure 1. They 
have a similar form and the individual autovariograms were fitted best by an exponential 
model with a distance parameter of about 0.86 units. The same form of model must fit all 
of the variograms and the range or distance parameter must be the same. The nugget 
variance, the sills of bounded models and the slope of unbounded models can be different. 
The coregionalization was modelled by an exponential function with a distance parameter 
of 0.86 units of latitude and the lower triangle of the sills is given below. The 
coregionalization of the residuals for elevation and temperature were also modelled and the 
values used for kriging. The variograms for the residuals were fitted best by a spherical 
function with a range of 1.01 units of latitude. 

Table 3:   Models of coregionalization fitted to the raw data and the residuals from the 
trend for temperature and elevation. 

Fitted sills in lower triangle for the raw data Fitted sills in lower triangle for 
the residuals 

Nugget 
Variances 

0.0                      Elevation 
0.0            0.6      Cross    Temperature 

0.0                     Nugget 
0.0           1.4        variances 

Sill 
Variances 

350826.2             Elevation 
-1169.6   6.3     Cross     Temperature 

258385.0                Sill 
-821.4   2.6       variances 

I 



Temperature 

Lag distance 

Elevation 

Lag distance 

Cross variogram of temperature and elevation 

Lag distance 

Figure 1: Experimental autovariograms of a) temperature and b) elevation, and c) the 
experimental cross variogram. 
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Figure 2 shows the experimental cross variograms, the fitted models together with the hull 
of perfect correlation (the two outer lines). The cross variogram of the residuals coincide 
with the hull showing a strong correlation. That for the raw data is close to the hull. 

a) 

Temp v Etevulfon 

WO 

J      0 

W> W 1J0 « 3S 

Log /m 

b) 

* 
S 

Temp v Elev residuals 

500 

0- 
/^_  

500- 

 , . _* •__, 
<w « U> IS 20 

Log /m 

Figure 2: a) Cross variogram of the raw data and b) cross variogram of the residuals, with 
the hulls of perfect correlation. 
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Cokriging 

The first analysis was to test the modelling and to assess the effects on the estimates of 
using either the raw data or the residuals. Twenty five of the 100 sites were removed from 
the raw data and the residuals. Using the models of coregionalization given above the 
values at the 25 validation points were estimated by punctual cokriging for the raw and 
residual data, respectively. In addition the raw data were used for autokriging the 
validation points. The original values, the estimates and the standard errors are given in 
Table 2. 
For every validation point the cokriged estimate has a smaller standard error than the 
autokriged estimate. The differences are small, but they show consistently that cokriging 
confers a small benefit in terms of estimating temperature more reliably. In addition the 
estimates are consistently closer to the original values for cokriging of the raw data. For 
the residuals the standard errors from cokriging are smaller for 15 of the 25 validation 
points. This was somewhat surprising in relation to the fact that the variograms of the 
residuals did not appear to be an improvement over that of the raw data. For the residuals 
the trend was added back so that the values could be compared with the raw data. The 
estimates are not as consistently good as they are for cokriging with the raw data. 

Table 4: Comparison between the raw temperature data, the autokriged estimates and the 
cokriged estimates, and the cokriged estimates for the residuals and with the trend added 
back. 

Original Autokriging Cokriging     Cokrig jng residuals 
X Y      Value Estimate SE Estimate SE Estimate Est+trend SE 

-127.05 37.90 54.0 53.33 2.48 53.32 2.43 0.5392 53.48 2.40 
-127.10 37.70 54.0 54.35 1.73 54.25 1.67 0.8142 53.71 1.91 
-126.50 33.50 60.0 60.03 1.63 60.07 1.56 -1.3596 58.38 1.82 
-128.10 35.20 57.0 57.19 2.19 57.36 2.12-0.0677 57.96 2.16 
-127.75 37.90 53.0 53.86 1.55 53.64 1.49 0.5506 53.74 1.79 
-128.00 36.20 54.0 55.17 4.09 55.13 4.08 -0.4151 56.08 3.84 
-126.60 37.50 54.0 53.17 2.63 53.24 2.60 0.3207 54.11 2.57 
-128.90 37.10 48.0 54.50 4.52 54.47 4.51 -0.0800 55.76 4.03 
-129.40 37.00 55.0 55.01 5.43 55.01 5.42 0.1675 56.91 4.31 
-126.75 34.30 58.0 58.36 5.29 58.33 5.28 -0.5767 58.26 4.30 
-127.65 37.45 56.0 53.82 2.99 53.75 2.97 0.2831 54.34 2.84 
-125.65 39.60 50.0 49.56 4.68 49.63 4.66 0.2680 49.52 4.02 
-129.01 35.10 59.0 57.95 1.96 57.87 1.93 -0.5659 58.47 2.09 
-124.80 40.45 49.0 49.22 4.73 49.36 4.72 0.6924 48.36 3.86 
-128.30 41.80 33.0 42.68 4.71 42.71 4.68-2.4696 40.90 3.72 
-128.60 35.90 57.0 56.81 1.71 56.80 1.63 -0.0015 57.47 1.83 
-126.50 36.75 54.0 53.60 3.01 53.22 2.97 -1.7979 53.47 2.74 
-127.10 37.45 54.0 54.94 1.93 54.89 1.89 1.0006 54.88 2.10 
-128.20 36.40 58.0 54.79 3.35 54.76 3.33 -0.4044 55.91 3.15 
-127.95 37.40 53.0 53.25 0.98 53.30 0.93 0.1380 54.47 1.53 
-129.40 36.03 58.0 56.87 1.50 56.92 1.43 0.5288 58.85 1.69 
-124.65 38.00 52.0 51.97 1.66 51.68 1.60 -0.4415 53.86 1.81 
-126.40 34.80 58.0 57.45 5.02 57.54 5.00 -0.6245 57.73 3.94 
-125.80 39.25 51.0 49.95 4.83 50.00 4.82 0.1461 50.22 4.18 
-130.40 42.30 45.0 47.26 6.34 47.38 6.33 -0.3178 45.31 4.23 



12 

The entire data set was cokriged as above, but this time using all of the elevation data. The 
estimates and the standard errors were mapped, Figures 3 to 5. Figures 3a and 4a show the 
maps of temperature from autokriged and cokriged estimates, respectively. There is 
remarkably little difference between them. Figure 5a shows the results of cokriging using 
the residuals and then adding the trend back. This is more different. This appears to show 
some distortion, however, it is difficult to be certain because we did not have the outline of 
Korea to superimpose on the estimates. This will be done at TEC. Figures 3b, 4b and 6b 
show the standard errors for temperature. They are slightly less for cokriging. These values 
show the pattern of sampling and also the coastline of the country. 
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Ordinary kriged estimates of temperature for Korea 
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Figure 3: a) Map of estimates from autokriging of temperature for Korea, 
b) map of the standard errors from autokriging of temperature 
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Cokriged estimates of temperature for Korea 
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Figure 4: a) Map of cokriged estimates of temperature for Korea, 
b) map of the standard errors from cokriging of temperature. 
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Cokriged estimates of residuals of temperature with trend added back for Korea 
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Figure 5: a) Map of the cokriged estimates of the residuals for temperature with trend added back for Korea, 
b) map of the standard errors from cokriging the residuals of temperature. 
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PART HI: Comparing wavelets and kriging for exploring nested scales of variation 

M. A. Oliver and E. Bosch 

This work has continued to use part of the SPOT image around Anderson Camp. However, 
it is slightly different in extent from that used previously to accommodate the wavelet 
analysis. To apply the discrete wavelet transform we need the rows and columns of the 
area to be analysed to be some power of 2; the area chosen was 27 x 27 = 128 x 128. As a 
result the variogram analysis and factorial kriging had to be redone so that the results relate 
to this new region and are comparable with the subsequent wavelet analyses. The theory 
of factorial kriging was given in the final report for Project 3 (Contract number N68171- 
97-C-9029). As an addendum to this report the paper presented at the geoENV98 
conference is appended and this includes the theory of factorial kriging. The application 
and theory of wavelets is only summarised briefly here. 

Summary of wavelet analysis 

Wavelets have some similarities with the windowed Fourier functions. Both of them have 
their energy well localized in time. This means that these functions decay rapidly in time 
or space, i.e. they go to zero fast, throughout the whole real/complex line. However, they 
can also have compact support, they are non-zero in a finite interval. In addition, the 
respective Fourier transforms of these functions have their energy concentrated about a 
small set of frequencies. An advantage of the wavelet transform over the windowed 
Fourier transform is that low frequency and high frequency resolutions can be 
characterized simultaneously. This means that wavelet analysis is suitable for situations 
where there are different levels of resolution of variation superimposed on each other 
(Daubechies, 1992). Wavelets are also good for describing transient data, whereas the 
Fourier transform is not. Wavelet analysis is not affected by local non-stationarity and this 
is an advantage it has compared with geostatistics, which assumes that the data are at least 
quasi-stationary (i.e. locally stationary). Local non-stationarity can arise where there are 
marked boundaries that result in a marked change in the local means of the variable of 
interest (see Part V of this report). 

Wavelets are oscillatory components that operate locally. The wavelet analysis starts with 
the choice of a mother wavelet, w(t), which is fixed. The mother wavelet can be dilated or 
shrunk to examine components in the variation that occur at different spatial or temporal 
scales. This enables multi-resolution analysis where different levels of variation are 
superimposed on one another (Mallat, 1998). This is our first aim in this investigation. 
The second relates to redundancy, which is a major problem with image data because of 
the amount of information involved. Wavelets are also of great value for data compression 
because they are able to remove redundant information and to retain the important 
structure of the data. 

Theory 

Wavelet analysis allows a signal (information) to be represented in terms of a set of basis 
functions, i.e. basis vectors or kernels.     The basis functions are a set of linearly 



17 

independent functions that can be used to produce all admissible functions of//) (Strang 
and Nguyen, 1996). Choosing the basis functions determines the kind of information that 
can be extracted. Thus, a function/*) can be expressed as 

/(0 = £2>»w»(0 (!) 
s     u 

where bsu is the wavelet coefficient and wsu(t) is the wavelet at scale s, translated by u. A 
special feature of the wavelet basis is that its elements wsu(t) are constructed by scaling and 
translating a single mother wavelet w(t): 

Wsu(t)=w(t/2s-u)/2sl2 (2) 

Using Fourier techniques, Mallat (1998) shows how to construct a wavelet function w(t). 
The wavelet function w(t) is constructed from a scaling function #S(t) which can be 
specified by a discrete filter l[n]. This means that you can obtain the discrete filter l[n] 
from the scaling function ^t) or you can obtain the continuous function #S(t) from the 
discrete filter l[n]. The proofs are not trivial but he provides a thorough explanation. 
Associated with the wavelet function w(t) is a discrete filter h[n]. The filter l[n], associated 
with the scaling function <zi(t), is a low pass frequency filter while the filter h[n], associated 
with the wavelet w(t), is a high pass frequency filter. The low pass filter smoothes the 
signal while the high pass filter retains the detail in the signal. This is no coincidence since 
these are the properties that are sought in the construction of such filters and functions. 
Furthermore, it is these filters, and not the continuous functions themselves, which are used 
to compute the Discrete Wavelet Transform. That is, the results obtained by convolving a 
signal with these filters are the same as those obtained by convolving the signal with the 
continuous functions. This is a remarkable feature since the filters consist of a smaller 
number of elements, thus reducing the amount of computation. 

As was mentioned above, some wavelets have compact support. Mallat (1998) shows that 
the scaling function ^t) has compact support if and only if the discrete filter l[n] has 
compact support. Furthermore, their support is equal. Also, if the support of ^(t) and l[n] 
is [Ni,N2], then the support of the wavelet function w(t) is [(Ni-N2+l)/2,(N2-Ni+l)/2]. 

Wavelets can be orthogonal which implies that 

\^su(t>su(0dt = 0 (3) 

This means that the above integral will be zero when s * S or u * U. That is, (3) will be 
zero at different scales s or translates u of w (t). Also, when s = S and it = U, then (3) is 
equal to 1. This leads to a simple formula for each coefficient bsu in the expansion of//). 
The expansion in equation (1) is multiplied by wJK and integrated by: 

[j(t)wsu(t)dt = bsu\jwsu{t)fdt. (4) | 

All other terms disappear because of the orthogonality.   Mallat (1998) shows how the 
components bsu are computed with the discrete filters l[n] and h[n]. i 
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A wavelet needs to satisfy the following condition 

-loo 
Jw(0* = 0 (5) 

—00 

for perfect reconstruction.    That is, equation (5) needs to be satisfied to be able to 
reconstruct exactly/f/) from the Forward Wavelet Transform. 

Multiresolution 

The dilation of the mother wavelet w(t) allows us to analyse the signal at different levels of 
resolution. Again, instead of using the scaling function and the wavelet function to 
compute the discrete wavelet transform of a discrete signal fin), we use the two filters 
described above, low pass l[n] and high pass h[n]. We assume that the number of samples 
of the signal f(n) is a power of two. To obtain the first level of the multiresolution 
decomposition of the signal/fn) we do as follows: 

We apply the high frequency filter h[n] to the signal/(ft,). This portion of the transform 
contains the fine detail structure of the signal. That is, h[n] filters out the smooth 
segments of the signal and retains the sharp transitions or discontinuities of the signal. The 
dilations and translations of the continuous wavelet transform, are reflected in the discrete 
filters l[n] and h[n] as decimation and translation, respectively. Thus, each filter produces 
half the number of sample points as those off(n). Since we are dealing with a finite 
number of sampling points, we can express the application of the filter h[n] to the signal fo 
=f(n) in terms of matrix and vector notation fhj = H^/"«, where Hi is a matrix whose rows 
comprise the elements of the filter h[n] and/0 is the vector containing the elements off(n). 
When this has been done, we then apply the low frequency filter l[n] to the signal f(n), 
whose purpose is to smooth the signal. When the filter is applied to the signal, the sample 
size is reduced to half the number of sampling points in f(n). Similarly, we can express the 
application of the filter l[n] to the signal f(n) in terms of matrix and vector notation flj = 
L,\fo, where Li is a matrix whose rows comprise the elements of the filter l[n] and fo is the 
vector containing the elements offfn). Note that with this notation, H refers to high 
frequency and L refers to low frequency. These two sets of high fhi and low/7/ frequency 
components comprise the first level of the multiresolution decomposition of the signal f(n). 
Since these filters (wavelets) are orthogonal, we can obtain f(n) from/ft/ and from/?/ by 
the following: 

fo = /■= H,'(/fc,) + Uifli) = Hi'CBtf) + U(LJ), (6) 

where Hi' and Li' are the transpose matrices of Hi and Li respectively. This means that 

Hi'(Hj/) + Li*(L|/) = (Hi*H,y + (UUV= (Hi'Hi + UUY 
= 1/=/, (?) 
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where I0 is the identity matrix of order corresponding to the size of the original signal/^. 

To obtain the second level of the multiresolution decomposition of the signal/f«j we do as 
follows: 

The same two filters h[n] and l[n] are now applied to the reduced resolution signal/?;. We 
leave the first high frequency resolution level components fhi untouched. Recall that the 
sample size of/7; is half that of/0. In matrix notation, when applying the filter h[n] to/7;, 
we have the high frequency component of/7; in fh2 = Hz/7; and the low frequency 
component of/7; \nfl2 = Ufli- Again, since the filters are orthogonal, we can obtain fli 
from fh2 and from/72 by the following: 

fli = H2'(/7b) + U(fl2) = H2'(H2/7;) + UiUfli), (8) 

which means that 

I^Hi'Hi + WU (9) 

To compute the subsequent multiresolution levels, we proceed in this fashion by applying 
the low and high frequency filters to the previous set of low frequency components. Since 
f(n) has a finite sample size, we can only perform this decomposition a finite number of 
times. Suppose the signal/f»; has 24 = 16 sampling points. Then this decomposition has 4 
steps. The resolution levels can be labelled as follows: 

[ifaX Wh (fh3\ (fh2\ (/»/)], o°) 

where (fhi) has 8 sample points, <fh2) has 4, (fh3) has 2 and both (fh4) and (fl4) have 1 
sampling point each.   Each H^/7; contains high frequency information o£f(n) but at a 
reduced resolution (grosser scale). This analysis allows us to examine features locally and 
at different scales. Note that we can reconstruct perfectly/f«,) from 
[(fa), ifa4X (fas), (/**), {ßi)] since h[n] and l[n] are orthogonal filters. 

At a given resolution, the scaling functions $t/2s - u) form a basis for the set of admissible 
signals. The level is set by s, and the steps at the level are 2s. The detail at the level s is 
represented by the wavelets w(t/2s - u). Multiresolution divides the frequencies into octave 
bands, from w to 2w, rather then different frequencies. 

From this analysis, to invert from a grosser resolution to a better resolution Mallat (1998) 
represents this as follows: 

signal at level 5 + 1 (local differences) ^1 
+ signal at level s 

details at level s + 1 (local averages) 71 

Note that as s increases, the details in the signal are further degraded or washed out. Using 
this notation and the transform coefficients of the example in (10), to obtain fl3 from/74 

and/7t4 we do the following: 

(H4'/M + (Ufa) = (H4'H4/75) + (L4X4/75) =fl3. 
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Thus the signal, such as the NIR information from an image, can analysed at different 
resolutions by the wavelet transform. The coefficients provide us with a measure of the 
energy the basis vector has at time / and/or scale s. The discrete wavelet transform 
decomposes the signal into a set of high and low frequency components which correspond 
to the coefficients of the dilated and translated basis functions w(t) and ^t) respectively. 
The high frequency component wavelet-coefficient wßs,u), provides a measure of the 
variation of / in a neighbourhood u whose size is proportional to s. This measure of 
variation in smooth signals is negligible while the variation tends to be significant in 
signals with jump discontinuities. Furthermore, increasing the dilation parameter s while 
filtering the signal produces a larger region of integration, which in turn smoothes the 
signal further. That is, less detail and lower frequencies are obtained as the dilation 
parameter increases. On the other hand, decreasing the dilation parameter s in the 
convolution process, generates smaller windows of integration allowing more detail and 
higher frequencies to come through. 

There are many different kinds of wavelets (adaptive, continuous, discrete, orthogonal, 
biorthogonal, real and complex), the most simple being the Haar. Nevertheless, those of 
Daubechies (Daubechies, 1988) have been used quite often since they first came out. 



21 

Analysis of the A.P. Hill data 

SPOTImage 

The part of the scene covering Fort A. P. Hill, Figure 6, is slightly smaller than that used 
before (see report N68171-97-C-9029), but it covers the same part of the image. Analyses 
were carried out on the complete data set and on sub-samples of 1 pixel in 2 for each 
column and row (or 1 pixel from a block of 4), 1 pixel in 4 for each row and column (1 
pixel from a block of 16), and 1 pixel in 8 for each row and column (1 pixel from a block 
of 64 pixels). The sub-sets were used to assess the accuracy of data reconstruction by the 
two methods. Table 5 gives the summary statistics for the full data set. 

Table 5:  Summary statistics for NIR for the 128 pixels by 128 pixels region of Fort A. P. 
Hill 

Statistic MR Hermite 
polynomials of MR 

Count 16384.0 16384.0 
Minimum 37.00 -4.496 
Maximum 183.00 4.009 
Mean 117.83 0.0287 
Variance 268.99 0.9995 
Standard deviation 16.401 0.9997 
Skewness -0.7408 -0.0943 
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NIR for A. P. Hill 

Figure 6:  Pixel map of the near infra read (NIR) of part of the SPOT image (128 by 
128 pixels) for Fort A. P. Hill. 
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Wavelet analysis 

The method of wavelet analysis that Edward Bosch used was that of Daubechies 
wavelets (Daubechies, 1988). The size of the image was 27 x 27, i.e. 128 rows and 128 
columns of pixel information for the NIR waveband. This region chosen from the part 
of the SPOT image that we analysed and described in the previous report (1998), and 
the size was such to avoid any need to pad the data to create appropriate resolution 
levels for the wavelet analysis. 

The wavelet transform was done with a pair of filters and not the wavelets themselves. 
The two-dimensional wavelet transform is separable which means that we can apply 
the filters in the horizontal direction and then in the vertical direction to obtain the 
desired results. As we described above, the convolutions can be represented in terms 
of two matrices L and H. The matrix L is made up of shifts of the low frequency filter 
l[n], and H is made up of shifts of the high frequency filter h[n]. These shifts force 
every other point in the output of each convolution to be discarded (decimated). 

In this study we used Daubechies 6-component wavelet filters. This wavelet satisfies 
three orthogonality conditions and three vanishing moments. The orthogonality 
condition implies that the filter is orthogonal to its shifts by two. Increasing the 
number of vanishing moments of the wavelet and its filter, forces the wavelet to be 
smoother (continuous and differentiable), but at the same time it increases the support 
of the wavelet and the number of sampling points in the corresponding filters. 

As we mentioned above, the wavelet-coefficient wf(s,u) provides a measure of 
variation of the signal f(t) at s and u. The smoother the signal, with three vanishing 
moments, the high pass filter zeros out the low frequency content in the signal leaving 
behind little information. Since the high pass filter h[n] is designed to discard a certain 
amount of information, which depends on the number of vanishing moments, the low 
pass filter l[n] thus must retain most of the 'energy' or information. 

Given that the image used is 128 rows by 128 columns in size (27 x 27), using Mallat's 
scheme, the original resolution level is 0. Applying the discrete wavelet transform 
(DWT) to the data once produces high and low frequency components at resolution 
level 1. This results in four quarter sets of data of size 64 by 64 pixels. The first 
quarter of the data represents in essence a sample of 1 in 2 of the rows and columns of 
the data matrix. This quarter contains the scaling coefficients which correspond to the 
low pass filter. The other three quarters contain the wavelet coefficients which are high 
frequency: quarter two contains the vertical coefficients, quarter 3 the horizontal ones 
and quarter 4 the diagonal coefficients. 

For this analysis the low and high frequency components were used separately to 
assess their overall contribution to the original image and to analyse the effect this had 
on the variogram of the original image. That is, we computed the inverse wavelet 
transform at several levels with only the corresponding low frequency components. 
Also, we computed the inverse wavelet transform at several levels without the low 
frequency content. 
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Geostatistical analyses 

The variogram was computed and modelled as usual using the smaller data set with a 
total of 16 384 pixels, Figure 7. This variogram was then used with the pixel 
information to filter the information by factorial kriging into the long-range and short- 
range components. Ordinary kriging was used to estimate the values of MR at 
positions where pixels had been removed from the data. In other words the estimates 
coincided with the locations of the original values so that a direct comparison could be 
made between the estimates and these. 

Results 

The variogram for the new data is still a nested structure, but the correlation ranges are 
smaller than for the larger part of the scene that we investigated before. The model 
fitted was a nested spherical function with two structures. Since the variogram was 
somewhat wavy at the longer lags, to improve the fit I modelled it to a lag of 40 only 
The short-range structure was 6.6 pixels or 130 m and the long-range structure was 21 
pixels or 420 m. The experimental variogram (points) and the fitted model (line) are 
given in Figure 7 a. The parameters of the models fitted to 100 and to 40 lags are given 
in Table 6 Since the data were skewed I transformed them using Hermite polynomials 
and computed the variogram from the transformed data, Figure 7 b and Table 6. There 
was little difference from the raw variogram, therefore, I did the analyses on the raw 
data. 
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Figure 7: a) Variogram of the near infra read (NIR) of part of the SPOT image (128 by 
128 pixels) for Fort A. P. Hill, b) variogram of the transformed pixel data using 
Hermite polynomials 
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Multiresolution analysis (filtering) 

The variogram suggests that there are two clear scales of spatial variation present: one 
of about 120 m and the other of about 420. This is also evident in the pixel map of the 
ordinary kriged estimates, Figure 8. There is local detailed variation superimposed on a 
broader pattern of variation. The major large structures in the variation that are evident 
appear to be related to major relief forms: the drainage basins and the intervening 
spurs, and the major types of ground cover. Short-range variation is also evident 
related to the water bodies, buildings and the more local changes in ground cover and 
drainage. These were described in the previous final report. 

Table 6: Model parameters for the variograms computed for the 128 by 128 pixel area 
of the SPOT image 

Variable 

MR 
(100 lags) 

NIR 
(40 lags) 
Hermite 
polynomials 
Long-range 
component 
Short-range 
component 
Low frequ 
-ency 1 in 2 
High frequ 

■ency 1 in 2 
High frequ 
-ency 1 in 4 
High frequ 
-ency 1 in 8 

Model type 

Nested 
Exponentia 
1 
Nested 
Spherical 
Nested 
Spherical 

Circular 

Nugget 
variance 

Spherical 
Nested 
Spherical 

Pure nugget 

Circular 

Circular 

0 

Sill(l) 
variance 

227.0 

152.2 

0.5240 

113.9 

87.9 

146.7 

41.7 

68.30 

Range(l) 
pixels (m) 

13.2 
(264) 

6.46 
(130) 
6.21 
(125) 
17.2 
(544) 
4.30 

J861 
8.40 
(168) 

2.944 
(58.88) 

Sill(2) 
variance 

Range(2) 
pixels 
(m)  

4.40 

91.71 

0.3755 

6.690 
(133.8) 

74.82 

85.1 
(1701.6) 

21.11 
(420) 
19.45 

(390) 

22.2 
(444) 
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Ordinary kriged estimates of NIR 
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Figure 8: Pixel map of the kriged NIR of part of the SPOT image (128 by 128 pixels) 
for Fort A. P. Hill 
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Factorial kriging and wavelet analysis enable the different spatial scales to be separated in 
theory. For factorial kriging this is controlled by the variogram which describes the variation 
present in the data. For the wavelet analysis this is controlled by the resolution level, which 
in turn is controlled by the octave bands and as a consequence is more arbitrary. One aspect 
of future research is to consider how the variogram could be used to guide the factoring 
process that controls the wavelet multiresolution analysis. 

Figure 9 is a pixel map of the kriged estimates of the long-range component of the variation 
filtered using the variogram. The large scale variation is related to the main relief features. 
The band of dark colours in the North and central part of the map are damper and wetter 
areas, and the lighter ones the spurs, upper slopes and built areas. This map could be used 
effectively to guide future sampling. If the end-user is interested in retrieving this level of 
information then a suitable sampling interval can be chosen using the range of the 
variogram. A sampling interval of 200 m would be adequate to ensure that this resolution 
of variation is identified. 

The pixel map of the short-range variation (Figure 10) shows the detail that is also evident 
in Figure 8, but less clearly so. The lakes are recovered well by this resolution. The dark 
patches in the bottom left hand corner (1 to 20 on the x-axis and 55 to 60 on the y-axis), in 
the central area (64 to 90 on the x-axis and 115 to 125 on the y-axis), and at the top of the 
map (45 to 70 on the x-axis and 158 to 180 on the y-axis). The road running N-S is also 
evident extending N along longitude 100 (on this map). The other short-range structures 
probably relate to changes in local drainage conditions and vegetation. For many surveys 
recovering this intensity of variation at a scale of about 120 m would require too much 
sampling. A sampling interval of 50 m to 60 m would be needed to resolve this short-range 
variation. If a sampling scheme of about 200 m were recommended in relation to the long- 
range variation this information on short-range variation would be lost. These maps enable 
us to demonstrate to the end-user the extent of information that is likely to be lost by 
adopting the coarser sampling. Sampling between 60 m and 200 m would be of little benefit 
because most of the short-range variation would not be identified and sampling at less than 
200 m would be inefficient to identify the long-range variation. Variograms were computed 
from the estimates of the long-range (Figure 11a) and the short-range (Figure lib) 
components. They recover the spatial scale of the variation quite well, but both variograms 
were difficult to model satisfactorily. 

For the first wavelet analysis the level of resolution was 1. The coefficients were derived as 
described earlier. The low frequency and the high frequency coefficients were reconstructed 
by the inverse wavelet transform, which restored each of the 64 by 64 sets coefficients to 
the size of the original data set. These are shown as pixel maps and should be compared 
with the appropriate kriged and the filtered maps, Figures 8 to 10. In addition variograms 
were computed for each of these four reconstructions: one low frequency (Figure 12 a) and 
three high frequency ones (the one is shown in Figure 12 b is the average as they were 
similar). 

The low frequency reconstruction, Figure 13, is very similar to the ordinary kriged output 
for the  image,  Figure   8.   It  is  important  to  remember  that  the  ordinary  kriged 
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Long-range estimates for NIR 
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Figure 9: Pixel map of the long-range component of the variation in NIR of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Short-range estimates of NIR 
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Figure 10: Pixel map of the short-range component of the variation in NIR of part of 
the SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Figure 11: a) Variogram of the long-range component, and b) variogram of the short- 
range component of the variation in NIR of part of the SPOT image (128 by 128 
pixels) for Fort A. P. Hill 
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Figure 12: a) Variogram of the low-frequency component, and b) variogram of the average 
of the high-frequency components for NIR of part of the SPOT image (128 by 128 pixels) 
for Fort A. P. Hill from a wavelet analysis at a resolution of 1 in 2 
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map was made from estimates using all of the data, whereas the low frequency wavelet 
reconstruction used the 1 in 2 sample, i.e. 25% of the original data. Both the long- and 
short-range components of the variation are evident, although there has been some loss 
of detail in the short-range variation. For example the road is less clear in Figure 13 
than in Figure 8. The variogram computed from the low frequency reconstruction, 
Figure 12 a, was very similar to the variogram of the raw data, Figure 7 a. Hence the 
spatial structure at both scales has been retained at this level of resolution. The most 
surprising finding was that related to the high frequency reconstruction. The map of 
the high frequency component (Figure 14) does not appear to reflect the kind of 
variation present in the map of the short-range component from factorial kriging. 
However, when we examined them in detail there is some weak evidence of the lakes, 
which are so clear in Figure 10. The variograms computed from these data are pure 
nugget, as shown in Figure 12 b. This means that the high frequency components are 
noise at this level of resolution; they contain no spatial structure. The latter is all 
retained in the low frequency reconstruction. 

To determine whether we could retrieve the long- and short-range components using 
wavelets we explored the next resolution, 2, in effect a sampling of 1 in 4 (or 1 pixel in 
16). Figure 15 shows the low frequency reconstruction. There is still long- and short- 
range variation evident, although the short range variation is becoming less distinct; for 
example the road and the lakes are still visible but their margins are less clearly 
defined. Figure 16 shows the pixel map for the average of the high frequency 
reconstruction and it is clear that there is more of the short-range component of the 
variation evident. The variogram of the high frequency reconstruction now shows 
some structure, Figure 17 a. Table 6 gives the model parameters of this variogram. 

The low frequency reconstruction of the 1 in 8 resolution 3 now shows the long-range 
component of the variation identified by factorial kriging, Figure 18. This resolution is 
fairly close to the short-range component of the variogram, i.e. 6.5 pixels, and this 
level of variation appears to have been filtered out now. So it seems that once the 
resolution of the short-range structure has been reached the effect was to remove the 
short-range variation. The map, Figure 19, of the high frequency reconstruction now 
shows some of the features evident in the kriged map of the short-range component of 
the variation. In particular the lakes are evident. The variogram computed from the 
average of the three high frequency reconstructions, Figure 17 b, shows clear evidence 
of structure and the range of spatial correlation described, 6.69 pixels, is close to the 
short-range component of the variogram of the original data. 

Summary 

It is clear that factorial kriging works well with multiresolution data. The main reason 
for this is that the filtering is controlled by the variogram which is a function of the 
data being analysed. It is a valuable method for directing future sampling for ground 
surveys because it can show what degree of variation is likely to be recovered. The 
multiresolution analysis using wavelets produces a different outcome. At the first 
resolution the high frequency components remove the noise, i.e spatially uncorrelated 
variation, but none of the short-range variation is resolved. At the subsequent 
resolutions close to the short-range component in the variogram the high frequency 
wavelets recovered the short-range variation, especially at level 2, evident in Figure 10. 
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10 To recover the long-range component of variation it seems that choosing a 
resolution near to that of the short-range component identified by the variogram is an 
effective way of avoiding several iterations of the wavelet analysis. Once the scales of 
variation have been identified by the variogram the choice of wavelet coefficients 
retained can be optimized. This presents an interesting consideration for further work. 
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Wavelet reconstruction for 1 in 2 selection 
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Figure 13: Pixel map of the low frequency reconstruction from the wavelet analysis of 
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution 
of 1 in 2 
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High frequency reconstruction 1 in 2 
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Figure 14: Pixel map of the average reconstruction of the high frequency wavelets 
from the wavelet analysis of NIR of part of the SPOT image (128 by 128 pixels) for 
Fort A. P. Hill at a resolution of 1 in 2 
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Wavelet reconstruction for 1 in 4 selection 
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Figure 15: Pixel map of the low frequency reconstruction from the wavelet analysis of 
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution 
of 1 in 4 
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High frequency reconstruction 1 in 4 
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Figure 16: Pixel map of the average high frequency reconstruction from the wavelet 
analysis of NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a 
resolution of 1 in 4 
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Figure 17: a) Variogram of the high-frequency component for the 1 in 4 resolution, 
and b) variogram of the high-frequency component for the 1 in 8 from the wavelet 
analysis of NIR at Fort A. P. Hill 
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Wavelet reconstruction for 1 in 8 selection 
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Figure 18: Pixel map of the low frequency reconstruction from the wavelet analysis of 
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution 
ofl in 8 
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High frequency reconstruction 1 in 8 
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Figure 19: Pixel map of the average high frequency reconstruction from the wavelet 
analysis of MR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a 
resolution of 1 in 8 
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Data reconstruction 

The 128 by 128 pixels were sampled by taking one pixel in every two for each row and 
column (or a sample of 1 in 4) which matches resolution level 1 in the wavelet 
analysis, one pixel in every four for every row and column (or a sample of 1 in 16), a 
wavelet resolution of 2, and one pixel in every eight for each row and column (or a 
sample of 1 in 64), a wavelet resolution of 3. The low frequency wavelet coefficients 
were inverted to reconstruct the image as before. Kriged estimates were made to 
coincide with the original data points for each data set using the variogram model from 
the full set of data. These maps are all shown as pixel maps. 

To evaluate the accuracy of the estimates by the wavelet reconstruction and kriging 
every value was compared with the original values of MR. First the differences were 
calculated between the estimates and original values for both analyses and for the three 
sub-samples, and these are shown as pixel maps (Figures 21 and 22, 26 and 27, 31 and 
32). The statistical distribution of these differences or errors has also been determined 
and these are shown as histograms (Figures 23, 28 and 33). In addition the mean 
squared differences or mean squared error (mse) was calculated (Table 4). 

Results 

The results were not entirely what we expected and we have been making sure that the 
kriging program and analyses have been correct. From the theory of geostatistics we 
should expect that the kriged estimates would have the smallest mse, but they do not 
for any of the analyses. It was this that led us to explore the differences in more detail 
to try to gain insight into the results from the two methods. In spite of the fact that the 
forward and inverse wavelet transform are linear operators, reconstructing the data 
with only some of the wavelet transform components is not done in a linear setting. 
Mallat (1998) says, "It is often easy to find a basis that produces a smaller non-linear 
error than a Karhunen-Loeve basis, ..." Although in this study we are not using the 
Karhunen-Loeve transform (principal component analysis), some methods will provide 
smaller errors than others depending on the model used. 

Sample of 1 in 2 

The pixel maps for the low frequency wavelet reconstruction and kriging from the 1 in 
2 data, Figures 13 and 20, respectively appear to be very similar to each other. The 
slight 'spottiness' evident on the kriged map is because punctual kriging was used and 
this is a true estimator returning the value at the data points. Table 7 gives the mean 
squared errors for both methods. That for the wavelets is less. The maps of errors or 
comparisons, Figures 21 (wavelet) and 22 (kriging), show a similar pattern in general. 
However, the differences between them help to explain why the mse is greater for the 
kriged estimates than for the wavelet reconstruction. There are large differences 
associated with the lakes where there are clearly marked local changes associated with 
boundaries in the variation. This is evidence of local non-stationarity which violates 
the assumptions of kriging. Wavelets are known to be suitable for dealing with local 
non-stationarity, and these results support this. Kriging has the largest absolute 
differences and there are more of them than  for the  low frequency  wavelet 
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Kriged estimates for 1 in 2 selection 
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Figure 20: Pixel map of the kriged estimates for the 1 in 2 sample of Nflt of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Comparisons for kriged estimates for 1 in 2 
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Figure 21: Pixel map of the comparisons between the kriged estimates for the 1 in 2 
data with the original NIR values of part of the SPOT image (128 by 128 pixels) for 
Fort A. P. Hill 
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Comparisons for wavelet reconstruction 1 in 2 
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Figure 22: Pixel map of the comparisons between the low frequency wavelet 
reconstructed values for the 1 in 2 data with the original NIR values of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Figure 23: Histograms of a) the kriged errors and b) the wavelet errors for the 1 in 2 
sampling for MR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill 



47 

reconstruction. However, compared to the number of pixels in the data these larger 
differences are few compared with the many much smaller differences for the majority 
of the estimates. 

To explore the reasons for the results in more detail the histograms of the differences 
were examined. Figure 23 a and b are the histograms of the differences for the wavelet 
and kriging analyses, respectively. It is clear that punctual kriging, which is a true 
estimator at the data points has a larger number of small errors than the wavelet 
analysis. However, this is not consistent as the number of data points retained is 
reduced. 

Sample of 1 in 4 

Figure 24 shows the result of kriging this sub-sample. It is evident that much of the 
short-range variation has been lost even though the variogram of the full data set was 
used. This map is similar to that for the long-range component. The map of the low 
frequency reconstruction, Figure 25, shows more of the short-range variation and 
appears to be much more accurate visually than the kriged map. The maps of the 
differences, Figures 26 and 27, appear to be similar overall, but closer examination 
shows that the patches where the differences are large for kriging are more extensive 
than those for the wavelet analysis. The values of the MSEs for kriging and the 
wavelet analysis in Table 7 also suggest that kriging performs worse than wavelets. 
The histograms, Figure 28 a (kriging) and b (wavelets), suggest that more of the 
kriged values have smaller differences from the original values than those for the 
wavelet reconstruction. However, the number of large errors is also greater for the 
kriged values. 

Sample of 1 in 8 

Figure 29 shows the result of kriging this sub-sample. It is evident that much more of 
the detail in the variation has been lost. The pattern that is returned is coarse and no 
longer reflects even the long-range component of the variation as accurately. Figure 30 
for the low frequency reconstruction from the wavelet analysis also shows how the 
detail has been lost. The maps of the differences, Figures 31 and 32 are again similar, 
but as before where the differences are greatest for the kriged differences (Figure 30) 
so their extent is also more extensive. It seems from the MSEs Table 7 that as the data 
become more sparse and separated by greater distances that kriging loses power in 
comparison with the wavelet analysis. The histograms, Figure 33 a (kriging) and b 
(wavelets), suggest that the wavelet analysis has performed better with this sub-set of 
the data. In the central part of the distribution there is little difference between the 
differences for wavelet analysis and kriging, but there seem to be many more large 
errors for kriging than the wavelets. 
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Kriged estimates for 1 in 4 selection 
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Figure 24: Pixel map of the kriged estimates for the 1 in 4 sample of NIR of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Wavelet reconstruction for 1 in 4 selection 
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Figure 25: Pixel map of the low frequency reconstruction from the wavelet analysis of 
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution 
of 1 in 4 
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Comparisons for kriged estimates 1 in 4 
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Figure 26: Pixel map of the comparisons between the kriged estimates for the 1 in 4 
data with the original NIR values of part of the SPOT image (128 by 128 pixels) for 
Fort A. P. Hill 
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Comparisons for wavelet reconstruction 1 in 4 
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Figure 27: Pixel map of the comparisons between the low frequency wavelet 
reconstructed values for the 1 in 4 data with the original NIR values of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Figure 28: Histograms of a) the kriged errors and b) the wavelet errors for the 1 in 4 
sampling for MR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Kriged estimates for 1 in 8 selection 
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Figure 29: Pixel map of the kriged estimates for the 1 in 8 sample of MR of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Wavelet reconstruction for 1 in 8 selection 
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Figure 30: Pixel map of the low frequency reconstruction from the wavelet analysis of 
NIR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill at a resolution 
ofl in 8 
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Comparisons for kriged estimates 1 in 8 
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Figure 31: Pixel map of the comparisons between the kriged estimates for the 1 in 8 
data with the original MR values of part of the SPOT image (128 by 128 pixels) for 
Fort A. P. Hill 
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Comparisons for wavelet reconstruction 1 in 8 
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Figure 32: Pixel map of the comparisons between the low frequency wavelet 
reconstructed values for the 1 in 8 data with the original NIR values of part of the 
SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Figure 33: Histograms of a) the kriged errors and b) the wavelet errors for the 1 in 8 
sampling for MR of part of the SPOT image (128 by 128 pixels) for Fort A. P. Hill 
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Summary 

The histograms of the differences are perhaps the most illuminating part of this 
analysis. It seems that we need to explore more, but that kriging performs well when 
fewer data have been removed than the wavelet analysis. It also suggests that the end- 
user can be provided with some insight to enable them to choose which is appropriate 
for their needs. It seems that for the 1 in 2 and lin 4 data sub-sets more of the errors are 
small for kriging than for wavelets, but that the overall error is least for the wavelet 
analysis. The latter is clearly more successful at retaining the transition features present 
which kriging will not do well. Again what does the end user want? 

Another thing that seems to emerge from this investigation is that the variogram could 
be used to choose an optimal subset of the data, based on the distance between the 
values. With the 1 in 2 sample both the long-range and short-range components of the 
variation were restored as we should expect from the correlation structures in the 
variogram: the distance between the pixels was less than the range of the short-range 
component. With the 1 in 4 sample only the long-range structure is successfully 
restored. If that is what is required then this can be chosen in a way that is driven by 
the data using the variogram. 

It is interesting to note that the means of the kriged reconstructed values, Table 7, are 
close in each case to the mean of the original data, Table 5. The variances for the 
kriged values decrease as the sampling intensity decreases and is evidence of the 
smoothing of the variation that occurs with kriging. However, the variance of the 
kriged values for the 1 in 2 sample is closer to the original variance than any of the 
other analyses. The wavelet analysis retains the variance better as the sampling 
intensity decreases. Geostatistical simulation would probably perform even better in 
terms of retaining the variance in the data and this method should also be compared 
with wavelet analysis in the future. 
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Table 7: Summary values from comparisons between the restored values and the 
original values using kriging and wavelets 

Data 
sub-sets 

1 in 2 (K) 
sub-sample 
1 in 4 (K) 
sub-sample 
1 in 8 (K) 
sub-sample 

Mean difference 
(error) 

lin2 (W) 
sub-sample 
1 in 4 (W) 
sub-sample 
1 in 8 (W) 
sub-sample 

-0.0698 

-0.3017 

0.0627 

-0.0959 

0.0000 

0.0000 

Mean 
squared error 
(MSE) 

28.361 

87.122 

159.78 

23.068 

67.860 

128.74 

Mean of 
reconstructed 
values 

117.76 

117.53 

117.89 

122.77 

117.83 

117.83 

Variance of 
reconstructed 
values 

235.64 

196.97 

114.20 

192.99 

210.13 

140.25 
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Part IV: The analysis of the vegetation surveys and comparisons with the SPOT 
data 

Introduction 

In this section the vegetation surveys and analyses will be described. It covers the 
analysis of the quantitative data from surveys 1 and 2, some parts of these data sets 
have been combined, and the qualitative data for surveys 2 and 4. The analysis of 
survey 3 was included in the final report for the previous contract (Contract N68171- 
97-C-9029). 

Quantitative Surveys 1 and 2 

Survey 1 was carried out in 1997 at A. P. Hill. The sample comprises several small 
transects that have random starting positions within the seven strata of the training 
areas. The plot size corresponded with the SPOT pixel size of 20 m by 20 m. The 
points along the transects were at 100 m intervals (see Figure 34). This survey mainly 
embraced either hard or soft woodland areas of vegetation. The second survey was a 
square grid with an interval of 300 m covering the whole of our study site at A. P. Hill 
(Figure 35). Since there were many sites without quantitative woodland information, 
because it included grassland, buildings and hard standing, the sites with quantitative 
information were analysed with the data from the first survey. 

Somple 1    (170) 
4220000 

4219000 

4218000 

4217000 

4216000- 

XXXX 
x>o<xx 

xxxx XXX 
XX      ^x 

X 
X 

.# 
x^ 
x^ 

xxxxx 
XXX 

XXX 
XX      xxxxx 

**xxx xxxxx 

293000 294000 295000 296000 297000 

Figure 34: Map of sites for Survey 1. 
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Figure 35: Map of sites for Survey 2. 

Exploratory data analysis 

The summary statistics of the 17 quantitative variables were analysed for surveys 1 and 
2 separately. They are given in Tables 8 and 9. The skewness values are generally small 
showing that the statistical distribution does not depart seriously from normal, except 
for stem spacing (survey 1). This variable had one extreme value which was removed to 
obtain a near-normal distribution for the variogram analysis. Figures 36 and 37 show 
the histograms of the variables listed below for survey 1. The digital numbers for the 
three wavebands of the SPOT image that coincided with sites where the vegetation had 
been examined were also extracted and their summary statistics are given in Table 10 
for both surveys. Their histograms are shown in Figure 38. 

Variables analysed and their abbreviation: 

This part of the list contains those variables related to forest density (Set A): 

maxcc - maximum range of visual estimate of crown closure (%) 
ovstmin - minimum range of overstory height (ft) 
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ovstmax - mamimum range of overstory height (ft) 
undstmn - minimum range of understory height (ft) 
undstmx - maximum range of understory height (ft) 
ba_f - estimate of basal area per hectare (metric units) 
stem - total stems in plot (count) 
batot - sum of all basal area for each tree per plot (square metres) 
stemsp - average minimum distance between stems within each plot (metres) 

This part of the list contains those variables related to tree species (SetB): 

ba_so - percentage of total basal area that is softwood in each plot 
ba_ha - percentage of total basal area that is hardwood in each plot 
stem_so - percentage of total number of stems that are softwood in each plot 
stem_ha - percentage of total number of stems that are hardwood in each plot 
bad_so - percentage of dominant basal area that is softwood in each plot 
badha - percentage of dominant basal area that is hardwood in each plot 
stemdso - percentage of dominant number of stems that are softwood in each plot 
stemd_ha - percentage of dominant number of stems that are hardwood in each plot 

Table 8: Summary statistics for vegetation measures for Survey 1 

Variable N Missing Mean Median Min Max Variance Standard 
deviation 

Skewness Kurtosis 

maxcc 169 67.04 70.0 0.0 100.0 543.3 23.31 -1.22 0.43 
minovst 169 73.72 80.0 15.0 110.0 395.1 19.88 -1.19 1.18 
maxovst 169 78.54 80.0 20.0 110.0 405.1 20.13 -1.32 1.29 
minunst 169 11.35 10.0 0.0 30.0 33.3 5.77 0.96 2.31 
maxunst 169 20.66 20.0 0.0 35.0 62.2 7.89 -0.70 0.28 
ba_f 168 34.36 34.3 2.4 76.2 199.4 14.12 0.05 0.31 
stem 169 20.44 19.0 0.0 81.0 112.9 10.62 1.96 7.01 
batjot 169 1.07 1.1 0.0 2.4 0.2 0.45 0.01 0.31 
stemsp 168 2 2.33 2.2 0.9 7.3 0.6 0.78 2.00 9.10 
ba_so 168 2 46.16 43.5 0.0 100.0 1487.1 38.56 0.13 -1.58 
ba_ha 168 2 53.54 54.5 0.0 100.0 1487.1 38.56 0.13 -1.58 
stem_so 138 2 41.01 33.3 0.0 100.0 1338.9 36.59 0.33 -1.41 
stem_ha 168 2 58.99 66.7 0.0 100.0 1338.9 36.59 0.33 -1.41 
bad_so 168 2 48.94 46.7 0.0 100.0 1610.3 40.13 0.06 -1.64 
bad_ha 168 2 51.06 54.3 0.0 100.0 1610.3 40.13 0.06 -1.64 
Stemd_ 168 2 49.14 48.8 0.0 100.0 1570.7 39.63 0.02 -1.62 
so 
Stemd 
ha 

168 2 50.86 51.2 0.0 100.0 1570.7 39.63 0.02 -1.62 
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Table 9: Summary statistics for vegetation measures for Survey 2 

Variable N Missing Mean Median Min Max Variance Standard 
deviation 

Skewness Kurtosis 

maxcc 60 54 68.17 80.0 5.0 100.0 674.5 25.97 -0.99 -0.02 
minovst 0 114 * * * * * * * * 
maxovst 60 54 73.75 80.0 20.0 100.0 315.8 17.77 -1.32 1.52 
minunst 17 97 8.59 10.0 1.0 20.0 34.9 5.91 0.28 -1.07 
maxunst 54 60 15.11 15.0 3.0 25.0 23.9 4.89 -0.07 -0.31 
ba f 58 56 32.06 34.5 3.4 57.9 175.9 13.26 -0.35 -0.73 
stem 58 56 19.91 18.5 5.0 44.0 96.1 9.80 0.63 -0.29 
bat tot 58 56 1.07 1.1 0.1 1.8 0.17 0.42 -0.35 -0.73 
stemsp 58 56 2.50 2.4 1.2 5.0 0.57 0.76 1.05 1.19 
ba so 58 56 57.54 63.5 0.0 100.0 1360.3 36.88 -0.31 -1.46 
ba ha 58 56 42.46 36.5 0.0 100.0 1360.3 36.88 -0.31 -1.46 
stem so 58 56 50.33 52.1 0.0 100.0 1288.4 35.89 -0.05 -1.53 
stem ha 58 56 49.67 47.9 0.0 100.0 1288.4 35.89 -0.05 -1.53 
bad so 58 56 60.87 64.9 0.0 100.0 1472.5 38.37 -0.38 -1.43 
bad ha 58 56 39.14 35.1 0.0 100.0 1472.5 38.37 -0.38 -1.43 
Stemd_ 58 56 60.15 71.8 0.0 100.0 1520.1 38.99 -0.34 -1.52 
so 
Stemd 
ha 

58 56 39.93 28.2 0.0 100.0 1520.1 38.99 -0.34 -1.52 

Table 10: Summary statistics for the three wavebands from the SPOT data for Surveys 
1 and 2 

Variable N Missing Mean Median Min Max Variance Standard 
deviation 

Skewness Kurtosis 

Red (1) 
Green 
(2) 
NIR(3) 

116 
116 

116 

54 
54 

54 

61.94 
36.33 

119.3 

61.0 
34.0 

121.0 

58.0 
32.0 

62..0 

80.0 
67.0 

148.0 

14.5 
33.56 

249.5 

3.81 
5.79 

15.79 

2.49 
3.17 

-0.55 

7.18 
11.71 

0.57 
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Figure 36: Histograms of variables in Set A of Survey 1. 
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Figure 38: Histograms of wavebands 1 (Red), 2 (Green), 3 (Nik) and NDVI for sites 
coinciding with Surveys 1 and 2. 

To assess which of these variables were likely to represent the variation the data most 
strongly a principal components analysis was done on the correlation matrix. The latter 
was used because it effectively standardizes the data. The first component accounted 
for 53.7% of the variation and the second 18%. The variables that 'loaded' most 
heavily on the first component were: 

ba_so, ba_ha, stem_so, stem_so, stem_ha, bad_so, bad_ha, stemd_so and stem_ha. 

The variables that 'loaded' most heavily on the second component were: 

maxcc, ba_f, stem, ba_tot and stemsp. 
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A set of variables that is considered to express the variation and summarise it 
adequately is: 

maxcc, ba_f, stem, stemsp, ovstmax, undstmx and ba_so. 

These are based on the distribution of the variables in the plane of PCI and PC2 (Figure 
39). 
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Figure 39: Plot of variables based on their loadings in the plane of PCI and PC2. 

Table 11 gives the correlations for the vegetation measures and the DNs of the 
wavebands. In general these are small for the vegetation measures and DNs. Those for 
NIR are the largest for maxcc, stem_so, ste_ha, stemd_so and stem_ha. There are some 
strong correlations for the vegetation measure which are to be expected, for example 
ba so and ba ha which add to 100%. 
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Table 11. Correlations for the vegetation measures and the three wavebands from the 
SPOT image. 

*** Correlation matrix *** 
bandl 1.000 
band2 0.960 1.000 
band3 -0.205 -0.308 1.000 

cc 0.023 0.017 0.227 1.000 
ovstmin 0.036 0.018 0.178 0.205 1.000 
ovstmax 0.030 0.021 0.198 0.237 0.956 1.000 
undstmn -0.148 -0.113 0.076 0.145 0:196 0.217 1.000 
undstmx 0.073 0.080 0.099 0.260 0.427 0.487 0.515 

ba_f 0.179 0.177 0.087 0.518 0.557 0.594 0.141 
stem 0.081 0.098 -0.021 0.474 -0.346 -0.306 0.021 

ba_tot 0.178 0.177 0.087 0.518 0.557 0.594 0.141 
ba_so 0.005 -0.005 -0.182 -0.260 -0.596 -0.625 -0.014 
ba_ha -0.005 0.005 0.182 0.260 0.596 0.625 0.014 

stem_so 0.004 0.010 -0.224 -0.230 -0.676 -0.687 -0.053 
stem_ha -0.004 -0.010 0.224 0.230 0.676 0.687 0.053 
bad_so 0.002 -0.015 -0.158 -0.276 -0.541 -0.572 0.007 
bad_ha -0.002 0.015 0.158 0.276 0.541 0.572 -0.007 

stemd_so 0.000 -0.006 -0.211 -0.274 -0.547 -0.568 0.009 
stemd_ha 0.000 0.006 0.211 0.274 0.547 0.568 -0.009 

stemsp -0.007 -0.033 -0.030 -0.456 0.182 0.136 -0.015 

bandl band2 band3 cc ovstmin ovstmax unds tmn 

undstmx 1.000 
ba_f 0.396 1.000 
stem -0.014 0.260 1.000 

ba_tot 0.396 1.000 0.260 1.000 
ba_so -0.146 -0.385 0.267 -0.385 1.000 
ba_ha 0.146 0.385 -0.267 0.385 -1.000 1.000 

stem_so -0.207 -0.385 0.309 -0.385 0.941 -0.941 1.000 
stem_ha 0.207 0.385 -0.309 0.385 -0.941 0.941 -1.000 
bad_so -0.116 -0.376 0.243 -0.376 0.990 -0.990 0.894 
bad_ha 0.116 0.376 -0.243 0.376 -0.990 0.990 -0.894 

stemd_so -0.121 -0.349 0.269 -0.349 0.972 -0.972 0.939 
stemd_ha 0.121 0.349 -0.269 0.349 -0.972 0.972 -0.939 

stemsp -0.174 -0.302 -0.660 -0.302 -0.122 0.122 -0.189 

unds tmx ba_f stem ba_tot ba_so ba_ha stem_so 

stem_ha 1.000 
bad_so -0.894 1.000 
bad_ha 0.894 -1.000 1.000 

stemd_so -0.939 0.966 -0.966 1.000 
stemd_ha 0.939 -0.966 0.966 -1.000 1.000 

stemsp 0.189 -0.076 0.076 -0.137 0.137 1.000 

stem_ha bad_so bad_ha stemd_so stemd_ha stemsp 
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Variogram analysis 

Experimental variograms were computed for all of the variables listed above for the 
combined data from surveys 1 and 2. Variograms were computed in four directions at 
the outset, but the number of sites is marginal for this. For set A variables the directions 
of maximum and minimum variation are not consistent, but for set B variables the 
variation in direction NNE to SSW (o) have the longest range of spatial dependence and 
the largest sill variances and those at right angles have the shortest ranges and the 
smaller sill variances (*) (Figures 40 and 41). 

Figures 42 and 43 show the experimental omnidirectional variograms for the two sets of 
variables from surveys 1 and 2. Those that show reasonable spatial structure are: 
maxcc, ovstmin, ovstmax, undstmn, stem, ba_so, baha, stem_so, stemjia, bad_so, 
badha, stemdso and stemdha. For the twin variables, such as ba_so and baha the 
variograms are identical for the reasons given earlier. The following variables were 
modelled: maxcc, overstory height (derived from ovstmin and ovstmax), understory 
height (derived from undstmn and undstmx), baf, stem, stem spacing, ba_so 
(equivalent to ba_ha also), stemso, bad_so and stemd_so. In addition the multivariate 
variogram from this analysis was computed and modelled, also elevation, and the three 
wavebands and NDVI. They are shown in Figures 44 to 47. 

Table 12 gives the model parameters of the variables modelled. The experimental 
variograms of many of the properties in Table 12 are somewhat erratic. This could be 
related to the irregular sampling scheme. However, there appears to be some evidence 
of periodicity in several variograms with wavelengths of between 500 m and 700 m. A 
previous report that contained transects of the pixels to match the vegetation ones also 
showed periodicity in the DNs. There appears to be some relation between the range of 
spatial dependence of elevation and several of the vegetation measures. The multivariate 
variogram has identified a short range component of variation of just over 300 m which 
matches with the short range component of NIR. The variograms of the vegetation 
classes are described later in this report. The models fitted to directional variograms of 
ba_so are revealing: the variation in direction 135° is 462 m and that in direction 45° is 
1271 m. This suggests that the different ranges might reflect some anisotropy in the 
variation. This was identified in the image data, but because the sill heights were 
different this signalled zonal anisotropy which cannot be corrected simply. It suggests 
that there are distinct strata present and this is evident from the areas with different 
kinds of vegetation. There are also distinct landscape units which will be explored in 
the next report. 
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Table 12. Variogram model parameters for the quantitative information from Surveys 1 
and 2, and for elevation and the image information. 

Variables Model type Nugget Sill Sill Range Range 
variance Cl c2 a, (m) a2(m) 

Canopy closure Circular 379.1 211.4 1707.0 
Overstory height Double 

spherical 
0 275.9 124.9 243.0 2034.0 

Understory Circular 19.2 12.6 1391.0 
height 
Basal are (field) Spherical 69.9 126.5 232.0 
Stem Pentaspherical 21.4 65.7 380.0 
Stem spacing Circular 0.305 0.193 407.0 
ba_so.ha Double 

spherical 
0 980.2 563.5 182.0 1553.0 

ba_so/ha (45°) Circular 662.3 1271.0 1271.0 
ba_so/ha(135°) Circular 428.0 841.4 462.0 
stem_so/ha Spherical 892.7 838.3 1428.0 
bad_so/ha Spherical 909.1 819.9 1274.0 
stemd_so/ha Circular 839.9 869.7 1432.0 
Multivariate Circular 6.05 3.08 309.9 
variogram 

Elevation Circular 93.05 312.5 1562.0 
Red (1) Pentaspherical 2.21 17.89 906.0 
Green (2) Double 

spherical 
0 20.6 19.7 386.0 1047.0 

MR (3) Circular 99.24 145.0 673.6 
MDVI Double 

spherical 
0.0015 0.00307 0.00202 666.8 1261.0 
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Figure 44: Experimental variograms and fitted models for Surveys 1 and 2. 
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Cross variograms 

The theory for computing cross variograms between two or more variables is given at 
the beginning of the report. Cross variograms were computed between the vegetation 
measures and the DNs from the three SPOT wavebands. Those selected and shown in 
Figures 47 to 50 show some relation between the variables. For band 1 (Red) there is a 
negative relation between maxcc, unstmn and stem, and a positive relation between 
stem spacing (Figure 47). The relations with the other variables is not clear. For band 2 
(Green) there are clear negative relations with maxcc and stem, and a positive relation 
with stem spacing (Figure 48). For band 3 (NIR) there are positive relations between 
maxcc, ovstmax, stem and ba_f, and a negative relation with ba_so (Figure 49). Cross 
variograms with elevation are give in Figure 50. Overall their relations with the 
vegetation measures are weak. 
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The analysis of the qualitative data for Surveys 2 and 4 

In addition to the measured values for the woodland areas, Surveys 2, 3 and 4 also 
described the vegetation in categories or classes. The distribution of the sites for all of 
the ground cover surveys is given in Figure 51, and that for Survey 4 alone in Figure 
52. The sampling scheme for Survey 4 was along a series of transects with a sampling 
interval of 10 m. This survey was confined to a smaller area than the transects of 
Survey 3 which had a 50 m sampling interval. 

In the original classification of these data there were several classes with few sites. 
Therefore, as for Survey 3 described in the previous final report (Contract N68171-97- 
C-9029), the number of classes was reduced. The original and new classes are given in 
Table 13. For Survey 2 there were 114 sampling points and for Survey 4 there were 
321 points. Figure 53 shows the spatial distribution of the eight classes in relation to 
the sampling points for Survey 2 and Figure 54 shows their distribution for Survey 4. 
Some sites had a mixture of ground cover, for example grass/low bushes, and these 
were eliminated from the analysis. For Survey 2, 19 sites were excluded and so the 
variogram analyses were carried out using the remaining 95 sites. For Survey 4, 71 
sites were excluded leaving 250 sites for the analysis. Table 14 summarises the 
contents of the classes. 
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Figure 51: Map of sites for the four ground cover surveys. 
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Table 13: Reclassification of the classes of ground cover for sites Surveys 2 and 4. 

Sample 2 Grass/Edge of Sample 4 Forest (Wet/Dry) 
Mixed Forest Disturbed 

Manmade Manmade works 
Building/Asphalt Asphalt 
Buildings Grass/Houses Asphalt/Grass Forest/Grass 
Campgrnd-like Grass/Low Bushes Asphalt/Grass/Soi Forest/Road 
Site Grass/Rd/Bldg 1 Forest/Scrub 
Gravel Parking Grass/Road Concrete Forest/Tall Grass 
Lot Lake roof-Asphalt Grass/Asphalt 
Powerline Grass Maple/Pine Grass/Asphalt/Ce 
Private-Landfill Oak/Holly Field ment 
Road/Grass Oak/Pine Field Grass/Conifer 

Pine/Maple Grass/Dirt 
Grass Pine/Mix Grass Grass/Forest 
Grass Pine/Plantation Grass Grass/HW 

Marshy Wetland Grass (Tall) Grass/Soil 
Grass Field Private-Mix Tall Grass HW/Marsh 
Grass Field Private-Mixed Marsh/HW 
Tall Grass Hardwood Pine/Brush 

Hardwood Pine/Grass 
Oak Forest (H) Pine/Hard/Shrub 
Oak Pine/HW/Marsh 

Mixed Forest Pine/Shrub 
Hard Mix Pine/Hardwood Shrub/Scrub 
Hard Mix Pine/HW ShrubScrub/Forest 
Oak Mix Forest (M) Tall Grass/Field 
Poplar 

Pine 
Wet Forest/HW 

Mixed_For. Pine 
Mixed_For. Forest (P) 

Pine Forest 
Pine Forest 
Plantation 
Young Pine Shrub/Scrub/We 
Private-Pine tland 

Shrub/Scrub/Wetl 
Wetland and 
Wetland 
Private-Wetland Excluded 
Wetland Edge Field/Forest 
w/Waterways Edge/Field 

Field/Gravel Road 
Excluded For Dist (M) 
Grass/Cemetery For/Tall Grass 
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Table 14: Summary of ground cover classes for sites Surveys 2 and 4. 

Survey 2 Survey 4 
Ground Cover Class Number of samples Ground Cover Class Number of samples 
Manmade 11 Manmade works 20 
Grass 16 Field 5 
Grass field 3 Grass 71 
Oak 3 Hardwood 24 
Hard Mixed Forest 12 Mixed Forest 32 
Mixed Forest 8 Pine 11 
Pine 34 Forest 76 
Wetland 8 Shrub/scrub/wetland 11 
Excluded 19 Excluded 71 

Total sites 114 Total sites                321 
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Figure 52: Map of sites for Survey 4. 
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Variogram analysis of categorical data for Survey 2 

Experimental variograms were computed for each of the eight ground cover classes, 
Figure 55. The ones that show clear structure are for the categories: manmade, grass, 
oak, pine and wetland. Considering the small sample size the evident structure in these 
suggests that there are distinct areas of ground cover type that can be identified with 
relatively little sampling effort. The variogram for oak appears to have a nested 
structure. These variograms have not been modelled at present, but this could be done 
in the next phase of work. From the graphs the average range of spatial dependence is 
about 600 m. This fits in well with the long range component of the variation in MR 
for the original part of the SPOT image analysed, Table 15. 

The experimental multivariate variogram based on the classes was computed. This 
analysis summarises the average rate of change from one class of ground cover to 
another. Figure 56 shows the experimental variogram with the fitted model. The 
variogram has a large nugget variance because there were relatively few sites and the 
sample spacing of 300 m was large. The variation that has not been detected in the 
change from one type of ground cover to another is embraced by the nugget variance. 
The variogram model was a single structure with a range of spatial dependence of 575 
m (Table 15). This corresponds closely with the long-range structure identified in the 
nested variogram of MR computed from the original part of the SPOT image that was 
analysed. This was slightly larger than the area used for the wavelet analysis (Part II of 
this report). The variogram of this waveband was fitted by a nested spherical model 
with a short range component of 120 m and a long range component of 542 m (Table 
15). It is evident that the spectral information is identifying the major changes in the 
different kinds of ground cover. 

Table 15. Variogram model parameters for the wavebands in the original SPOT image 
and the qualitative information from Surveys 2 and 4. 

Variables Model type Nugget Sill Sill Range Range 
variance Cl C2 a} (m) a2(m) 

Red - average Double 0.4661 
spherical 8.080 18.432 165.56 518.94 

Green - average Double 
spherical 2.026 16.568 28.437 224.32 650.48 

MR- average Double 
spherical 0.0 151.39 118.87 120.56 542.22 

MDVI- average Double 
spherical 0.0 0.0343 0.0138 139.74 643.35 

Ground cover 2 Circular 0.431 0.283 575.0 
Ground cover 4 Double 

spherical 0.112 0.307 0.328 67.0 689.0 
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Figure 54: Distribution of sites for each category of ground cover for Survey 4. 
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Figure 56: Experimental multivariate variogram (symbols) based on the ground cover 
classes for Survey 2 and the fitted model (solid line). 

Cross variograms were computed as before between the ground cover classes and each 
of the three wavebands. Figures 57 to 59 show the cross variograms for Survey 2. 
Those for wavebands 1 and 2 are similar. For the Red waveband (1) manmade, grass, 
oak, hard mixed forest, mixed forest, pine and wetland show evidence of 
coregionalization with it. The strength of this cannot be judged at present until they 
have been modelled. The coregionalization for the Green waveband (2) is as above, 
except for grass. For NIR (3) the coregionalization is between oak, hard mixed forest, 
mixed forest and wetland. The relations for the two grass categories and pine are not 
strong. 
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Figure 57: Cross experimental variograms between band 1 (Red) and the ground cover 
classes for Survey 2. 
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Figure 59: Cross experimental variograms between band 3 (NIR) and the ground 
cover classes for Survey 2. 
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Variogram analysis of categorical data for Survey 2 

Experimental variograms were computed for each of the eight ground cover classes to 
a maximum lag of 400 m, Figure 60 and 1000 m, Figure 61. They are more erratic than 
the ones for Survey 2, which is surprising considering the large number of sampling 
points. However, the behaviour of the variograms probably reflects the fact that the 
categories of ground cover repeat themselves along the transects, this would cause the 
waviness that is apparent in many of them. The variograms all show clear structure, 
especially over a short distance of about 100 m. The average range of these 
variograms, based on where they start to flatten, is about 145 m. This relates closely to 
the short range component of the variation in MR for the original part of the SPOT 
image analysed, Table 15. These variograms could be modelled in the next phase of 
the work. 

The experimental multivariate variogram based on the classes was computed as before, 
Figure 62. The fitted model is the solid line the figure. The variogram was fitted best 
by a nested spherical model with a short-range structure of 67 m and long-range one of 
689 m. However, the appearance of the experimental variogram suggests that the 
short- range component should be at about 150m to 175 m. Several attempts have 
been made to fit a better model, but the erratic nature of the experimental 
semivariances has prevented this. This variogram mirrors the form of that for NIR 
closely in spite of the fact that the model parameters are different for the short-range 
component. 

Cross variograms were computed as before between the ground cover classes and each 
of the three wavebands. Figures 63 to 65 show the cross variograms for Survey 4. 
Those for the Red and Green wavebands are similar. The coregionalization appears to 
be weaker for this analysis, but this could be related to the complex nature of the 
individual variograms. The variables that show the strongest relation with wavebands 1 
and 2 are manmade, field, grass, forest and wetland. For MR (waveband 3) the 
strongest relations are with manmade, hardwood, mixed forest, pine, forest and 
wetland. 

Cross variograms were also computed between the ground cover categories and 
elevation. The strongest relations are with field, mixed forest, forest and wetland. In 
the previous final report we commented on the fact that the patterns in the long-range 
component of the variation, in particular, appeared to have a strong relation with the 
physiography. These results appear to confirm this. 



94 

Manmade works 

0.04- + 
+ +     + 

+ ++ 

0.02- 

0.00- 

+  ++   +++ 

+ + 

1                   1 

Field 

0.02 

0.01 

0.00 

+ 

0.15- 

0.10- 
++                        + +   + ++ 

+ 
+ 

0.05- + 

0.00- 1                   1 

200 400 200 400 200    400 

Hardwood 

0.15- + 
+ 

0.10- 

0.05- 

+ + + 

+ 
+ 

0.00- I                                                                                       1 

200    400 

Forest 
+ 

0.2- + 

++ 

*;* + 
+ + + + + 

*f + ++ 

0.1- 

0,0- 

+ 

+ 
I                         1 

Mixed Forest 

0.15- 

0.10- 

0.05- 

+ 
+*■     4+ 

+"* +     + ++ V 
+    +

+              **+ 
.++f +++    + 

+++     +       +H- 
+ 

+                           + 

0.00- 1                                  1             ■  ■ 

Pine 
++ 

0.10- 
++ 

+ 

0.05- 

+ ++ 
+   ++ 

+ 

+ + 
+ 

0.00- i                    i 

Shrub/Scrub/Wetland 

; 0.04- 

+ + 

0.02- ++ 

+ 

-    0.00- 

+ 

+ 
+- 

1                       1 

200 400 

200 400 200 400 

Figure 60: Experimental variograms of the ground cover classes for Survey 4 
computed to a maximum lag of 400 m. 
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Figure 61: Experimental variograms of the ground cover classes for Survey 4 
computed to a maximum lag of 1000 m. 
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Summary of vegetation analysis 

The results of the ground cover analyses suggest that there are distinct spatial patterns 
in the variation: a short-range one related to local changes in cover of about 150 m 
extent and a longer range one of about 550 m in extent. They relate to the patterns 
observed in the imagery, in particular for the NIR waveband. 
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Figure 62: Experimental multivariate variogram (symbols) based on the ground cover 
classes for Survey 4 and the fitted model (solid line). 
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classes for Survey 4. 
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Figure 64: Cross experimental variograms between band 2 (Green) and the ground 
cover classes for Survey 4. 
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Figure 66: Cross experimental variograms between elevation and the ground cover 
classes for Survey 4. 
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Digital Elevation Analysis 

Digital elevation information for A. P. Hill was provided for most of the area of the 
SPOT image that we have been working with. Part of the southwestern corner is 
missing because this are is beyond the confines of the base. The data were on a 5 m 
grid. Table 16 gives the summary statistics of the elevation data. Variograms were 
computed along the rows and columns of the grid and the average variogram was also 
estimated. Figure 67 shows the variograms. They all have a concave upward slope near 
to the origin which suggest that local trend or drift might be present. This is common 
for elevation data. 

Table 16: Summary statistics for Elevation 

Elevation 
Number of 26878 
observations 
Minimum 155.0 
Maximum 232.0 
Mean 198.15 
Variance 234.88 
Standard deviation 15.33 
Skewness -0.5499 

To assess whether the local trend could be removed by a coarser sampling interval the 
data were sampled to produce a 20 m grid. This corresponded with the information 
from the SPOT image with a pixel size of 20 m by 20 m. The variograms from these 
data now show no evidence of local trend, but there is evidence of regional trend, i.e. 
the variograms start to rise after an initial sill has been reached at about a lag distance of 
800 m, Figure 68. The amount of trend present was determined by fitting linear, 
quadratic and cubic functions to the coordinates of these data. The linear function 
accounted for 17% of the trend, the quadratic 22% and the cubic 31%. Variograms 
were computed from the residuals to these trend functions. Figure 69 shows the 
variograms computed from the residuals of the linear trend. They show clearly that the 
regional trend has been removed. The variograms computed from the residuals of the 
quadratic trend, Figure 70, are similar, as are those for the cubic residuals, Figure 71. 
The variogram that is most different is the one for the columns in Figure 71 (cubic). 
This emphasises the possibility of some periodicity in the N-S direction. Table 17 gives 
the parameters of the models fitted to the average variograms. The model for the raw 
data was fitted to a lag of 600 m only because thereon the variogram continues to 
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rise A single pentaspherical model provided the best fit. The model has a range of 
578 m which relates closely to the long-range component in the image. The variograms 
of the residuals were all fitted best by nested spherical models, Table 17. Their ranges 
do not correspond as closely with image data as the vegetation does. The short-range 
component of about 220 m is similar to that of the Green waveband (2) and the long- 
range one of about 1000 m is similar to that fitted to the rows of NDVI. 

Table 17. Variogram model parameters for elevation on a 20 m grid for A. P. Hill. 

Variables Model type Nugget 
variance 

Sill 
Cl 

Sill 
C2 

Range 
aj (m) 

Range 
a2(m) 

Raw elevation 
data 
Residuals from 
linear trend 
Residuals from 
quadratic trend 
Residuals from 
Cubic trend 

Pentaspherical 

Double 
spherical 
Double 
spherical 
Double 
spherical 

0 

0 

0 

0 

162.1 

19.7 

18.7 

26.4 

8.9 

14.1 

9.5 

578.0 

235.0 

220.0 

263.2 

927.0 

906.0 

1363.0 

The other aspect of these variograms is that there is more variation along the columns 
than the rows. This was also detected in the variograms of the SPOT data. Since the 
directional variation results in different sill heights we did not correct for it as this kind 
of anisotropy (zonal) requires stratification. Figure 72 shows that the two directional 
variograms overlap near to the origin which is the important point for kriging. It means 
that the kriged estimates will not be affected by the directional difference at the longer 
lag distances. 
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Figure 67: Experimental variograms of elevation for the rows and columns of a 5 m 
grid, and the average variogram of these for A. P. Hill. 
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Figure 68: Experimental variograms of elevation for the rows and columns of a 20 m 
grid, and the average variogram of these for A. P. Hill. 
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Figure 69: Experimental variograms of elevation for the rows and columns of a 20 m 
grid, and the average variogram of these computed from the residuals of a linear trend, 
and the fitted models (solid lines). 
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Figure 70: Experimental variograms of elevation for the rows and columns of a 20 m 
grid, and the average variogram of these computed from the residuals of a quadratic 
trend, and the fitted models (solid lines). 
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Figure 71: Experimental variograms of elevation for the rows and columns of a 20 m 
grid, and the average variogram of these computed from the residuals of a cubic trend, 
and the fitted models (solid lines). 
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Figure 72: Experimental variograms of elevation for the rows and columns of a 20 m 
grid for A. P. Hill: Dl is from the rows and D2 is from the columns. 
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We decided to do the factorial kriging on the raw data and on the residuals from the 
quadratic trend. Figure 73 shows the experimental variogram and the model fitted to the 
average variogram of the quadratic residuals. Figures 74 and 75 show the kriged maps 
of the raw elevation data and that computed using the residuals from the quadratic 
trend, respectively. They are very similar, but the one for the residuals shows slightly 
more detail. The trend function that has been removed varies very smoothly and this has 
reduced the apparent variation in Figure 73. The strange pattern in the southwestern 
corner is the result of missing data in this region. 

Figures 76 and 77 show the maps of the long-range component of the variation for the 
raw data and that from the quadratic residuals. The patterns that are evident are similar. 
It is interesting to compare these Figures with Figure 80, the long range component of 
NIR. The large valley that extends from the SW then E and then changes direction to 
the N E corresponds with the yellow area in Figure 80. The tributary valley that extends 
N from the major valley at about Easting 295500 (Figure 77) is also evident in Figure 
80 as the orange area. The other valley system to the NW which runs in and E to W 
direction is also evident in both Figures 77 and 80. The reddish areas on the map of the 
long range component for NIR were interpreted as higher ground in a previous report 
and this is confirmed now in the maps of the DEM. 

Figures 78 and 79 show the maps of the short range component of the variation for the 
raw data and that from the quadratic residuals. The patterns are almost identical. These 
correspond to the local variation in relief that is evident on the ordnance map for this 
area. The intricacy of the valley systems and general dissection is very clear in these 
maps. Again it is interesting to compare these with the short range component of NIR, 
Figure 81. A similar degree of detail and spatial scale is evident in all of the short-range 
maps. 

If trend is present in data it should be removed for a geostatistical analysis. In this case 
it has affected the form of the variograms, but it appears to have had little effect on the 
spatial patterns observed after kriging both raw and residual data. 

The relation between elevation and NIR was mentioned above. This was examined 
further by computing the cross variogram between them. Figure 80 shows the 
autovariograms for elevation and NCR. together with their cross variogram. The outer 
dotted lines on the cross variogram show the hull of perfect correlation. It shows that 
although there is a relation between the image information and elevation it is weak. 
Visually it is more convincing. This result will be explored further in the next phase of 
work when we shall analyse a smaller part of the image. 
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Figure 73: Average experimental variogram of elevation for the 20 m grid computed 
from the residuals of a quadratic trend, and the fitted models (solid line). 
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Figure 74: Kriged map of the raw elevation data on the 20 m grid for A. P. Hill. 
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Figure 75: Kriged map of the residuals from a quadratic trend of elevation on the 20 m 

grid A. P. Hill. 
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Figure 76: Kriged map of the long range component of the variation for the raw 
elevation data on the 20 m grid for A. P. Hill. 
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Figure 77: Kriged map of the long range component of the variation for the residuals 
from a quadratic trend of elevation on the 20 m grid A. P. Hill. 
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Figure 78: Kriged map of the short range component of the variation for the raw 
elevation data on the 20 m grid for A. P. Hill. 
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Figure 79: Kriged map of the short range component of the variation for the residuals 
from a quadratic trend of elevation on the 20 m grid A. P. Hill. 
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Figure 80: Kriged map of the long range component of the variation for NIR. 
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Figure 81: Kriged map of the short range component of the variation for NIR. 
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Appendix II 

Wavelets and Kriging for Filtering and Data Reconstruction 

M. A. OLIVER1, E. BOSCH2 and K. SLOCUM2 

^Department of Soil Science, The University of Reading, Whiteknights, Reading 
RG6 6DW, UK, 
2US Topograhic Engineering Center, 7701 Telegraph Road, Alexandria, Virginia 
22310-3864, U S. A. 

Abstract 

Wavelet analysis operates locally and can describe a wide range of frequencies 
simultaneously and filter them by multi-resolution analysis. Kriging analysis also filters 
spatial variation at different resolutions. We compare the effectiveness of wavelets and 
factorial kriging for exploring nested variation in a SPOT image. In addition both 
wavelets and kriging can be used to restore image data after compression. We compare 
the reliability of the restorations from the two approaches. 

The near infrared (NIR) waveband of part of a SPOT image covering Fort A. P. Hill 
in Virginia was used for these analyses. The region is on the dissected Piedmont area 
of the eastern United States. An area of 128 by 128 pixels was selected from the scene 
for analysis. The experimental variogram was computed and modelled by a nested 
spherical function with correlation structures of about 6.5 pixels and 21 pixels. The 
variogram and factorial kriging separated the two main spatial features present. The 
low-frequency component from the wavelet analysis contained the spatial structure. 
The long-range component became evident as the resolution decreased. The high- 
frequency components removed only the uncorrelated variation and we could not 
retrieve the short-range component. 

The image was sampled so that one in every four pixels was retained, one in every 16 
and one in every 64. Using the variogram model for the full set of data values were 
estimated at the former data points by ordinary kriging. The low-frequency wavelet 
transform for these resolutions was inverted so that the missing values were restored. 
The restored values from both analyses were compared with the original values and the 
mean squared differences (MSD) computed. For all resolutions the MSD was smaller 
for the wavelet reconstruction. However, the MSD proved somewhat misleading when 
frequency distributions of the errors were compared. They suggested that wavelets are 
more able to deal with the local fluctuations present in the image and with local non- 
stationarity than kriging, but that for the majority of points the kriged estimates have a 
smaller error. 

The paper will be illustrated with maps of the results, and we shall suggest 
improvements for restoring images by kriging. 



Appendix III 

♦C **** PROGRAM TO COMPUTE VARIOGRAMS FOR SQUARES OF VARIOUS SIZES 
C 
C **** R WEBSTER    ROTHAMSTED 
C     Latest version 22 July 1999 
C 
C    This program was written as part of US project 
C    and may be handed over to TEC. 
C 
C    Program reads data on a grid with X and Y coordinates 
C      and converts them to an array for the selected variate 
C      with implied coordinates. 
C 
C    It tiles the grid into non-overlapping squares of 
C       given side.   Any points to the bottom or right 
C       of the grid left over play no role. 
C 

DIMENSION ZK(190,189), ZA(30), GRID(30,30) 
C **** ZK( , ) will hold grid of data. 

character*72 TITLE(2) 
character*72 INFILE, 0P12, IN11, FDAT 
data MAXROW, MAXCOL/190,189/ 
data IN,INDAT,LP/10,11,12/ 
PRINT * ,  "WHAT IS THE NAME OF THE STEERING FILE ?' 
READ (5,•(A)') INFILE 
OPEN (INDAT,FILE=INFILE,STATUS='OLD') 
print * , 'WHAT IS THE NAME OF THE DATA FILE ? ' 
read (5,'(a)') IN11 
open (IN,file=INll,status='OLD') 
PRINT *,'WHAT DO YOU WANT TO CALL THE MAIN OUTPUT FILE ?' 
READ (5,'(A)') 0P12 
OPEN (LP,FILE=OP12,STATUS='NEW) 

C      PRINT *,'WHAT DO YOU WANT TO CALL THE SECOND RESULTS FILE ?' 
C      READ (5,'(A)') OP12 
C      OPEN (LF8,FILE=OP12,STATUS='NEW) 

READ (INDAT,10) TITLE 
WRITE (LP,10) TITLE 

C      WRITE (LF8,12) TITLE 
10 FORMAT (A) 

NVAR  = int(CYNPUT(INDAT)+0.1) 
NSEL  = int(CYNPUT(INDAT)+0.1) 
MSIDE = int(CYNPUT(INDAT)+0.1) 
MAXLAG= int(CYNPUT(INDAT)+0.1) 
ZMIS  = CYNPUT(INDAT) 
ILOG  = int(CYNPUT(INDAT)+0.1) 
if (ILOG.eq.l) SHIFT=CYNPUT(INDAT) 

C ****  NVAR is number of variates in file. 
C      NSEL is the one selected for analysis. 
C      MSIDE is the side of the square within which 
C averages are computed. 
C      MAXLAG is the maximum lag distance of variograms 
C      ZMIS is the value used for missing or blank. 
C      ILOG = 1 to transform to log to base 10. 
C      SHIFT is a value to be added to data to shift the origin 
C before taking logarithms. 
C **** set data grid to blank 
C      if (ILOG.eq.l) ZMIS=logl0(ZMIS) 

do 20 1=1,MAXROW 
do 20 J=l,MAXCOL 

ZK(I,J)=ZMIS-10000.0 
2 0 continue 

C 
read (INDAT,10) FDAT 

C **** Read the data. 
35 NC=0 



NROW=0 
NCOL=0 

36 NC=NC+1 
read (IN,FDAT;end=45) ICOL, IROW, (ZA(J) , J=1,NVAR) 
if (ICOL.gt.MAXCOL) then 

write (LP,38) ICOL 
stop 

endif 
if (IROW.gt.MAXROW) then 

write (LP,39) IROW 
stop 

endif 
38 format (/10x,'ICOL exceeds array bound'//) 
39 format (/lOx,'IROW exceeds array bound'//) 

if (NROW.lt.IROW) NROW=IROW 
if (NCOL.lt.ICOL) NCOL=ICOL 
ZL=ZA(NSEL) 
if (ILOG.eg.l) then 

if (ZL.gt.0.01) then 
ZL=loglO(ZL+SHIFT) 

else 
ZL=ZMIS-100000.0 

endif 
endif 
ZK(IROW,ICOL)=ZL 
goto 36 

45 continue 
NC=NC-1 
write (LP,47) NC, NROW, NCOL 

47  format(// 10x, 'Number of data      ',ilO/ 
1 lOx, 'Number of rows      ',ilO/ . . 
2 lOx, 'Number of columns   ',ilO/) 
if (ILOG.eq.l) write (LP, 51) SHIFT 

51 format (/lOx,'DATA TRANSFORMED TO LOG TO BASE 10'/ 
1 lOx,'SHIFT ',F10.3/) 
ZMAX=-99999999 
ZMIN=999999999 
NN=NC 
ZBAR=0.0 
SSQ=0.0 
COUNT=0.0 
do 54 1=1,NROW 

do 53 J=l,NCOL 
ZZ=ZK(I,J) 
if (ZZ.le.ZMIS) goto 53 

if (ZMAX.lt.ZZ) ZMAX=ZZ 
if (ZMIN.gt.ZZ) ZMIN=ZZ 
DIF=ZZ-ZBAR 
COUNT=COUNT+1.0 
ZBAR=ZBAR+DIF/COUNT 
SSQ=SSQ+(1.0-1.0/COUNT)*DIF*DIF 

53 continue 
54 CONTINUE 

A3=0.0 
do 57 1=1,NROW 

do 56 J=l,NCOL 
ZZ=ZK(I,J) 
if (ZZ.le.ZMIS) goto 56 

A3=A3+(ZZ-ZBAR)**3 
56 continue 
57 CONTINUE 

A2=SSQ/C0UNT 
A3 =(A3/COUNT)/(A2 * sqrt(A2)) 
VAR=SSQ/(COUNT-1.0) 



STD=sqrt(VAR) 
write (LP, 58) COUNT, ZMIN, ZMAX, ZBAR, VAR, STD, A3 

58 format (//,10X, • Count ',fl0.l/ 
1 lOx, ' Minimum ',fl0.4/ 
1 lOx, ' Maximum ',fl0.4/ 
1 lOx, ' Mean ',f!0.4/ 
2 lOx, ' Variance ',fl2.6/ 
3 lOx, ' Standard deviation ',fl0.4/ 
4 lOx, ' Skewness ',fl0.4/) 

C 
C **** Compute starting in top left corner of grid. 

NTILER=int(NROW/MSIDE) 
NTILEC=int(NCOL/MSIDE) 

C 
do 300 IR=1,NTILER 

IRS=(IR-1)*MSIDE+1 
IRE=IR*MSIDE 
do 300 IC=1,NTILEC 

ICS=(IC-1)*MSIDE+1 
ICE=IC*MSIDE 
11 = 0 
do 210 I=IRS,IRE 

JJ=0 
11=11+1 
do 210 J=ICS,ICE 

JJ=JJ+1 
GRIDCCI, JJ)=ZK(I,J) 

210      continue 
C **** Data are now transferred into array GRID( , ) covering 
C     a small square of side MSIDE. 
C     Initialize accumulators. . . 

do 220 I=1,MAXLAG 
WLAG(I)=0.0 
GAM(I)=0.0 
WT(I)=0.0 
SUM=0.0 
SSQ=0.0 
COUNT=0.0 

220 continue 
do 225 1=1,MSIDE 

do 225 J=l,MSIDE 
ZZ=GRID(I,J) 
if (ZZ.lt.ZMIS) goto 225 
COUNT=COUNT+1.0 
DIF=ZZ-SUM 
SUM=SUM+DIF/COUNT 
SSQ=SSQ+(1.0-1.0/COUNT)*DIF*DIF 

225 continue 
SSQ=SSQ/(COUNT-1.0) 
SDV=sqrt(SSQ) 
write (LP, 227) IRS, ICS, SUM, SSQ, SDV 

227 format (//5X, 'CORDINATES    ', 16,16/ 
1 5X, 'MEAN ', F12.5/ 
2 5X, 'VARIANCE      ', F12.5/ 
3 5X, 'ST. DEVIATION ', F12.5/) 
write (LP,230) 

230 format (/2x, 'LAG  ANGLE    SEMIVARIANCE    COUNT'/) 
do 255 1=1,MSIDE 

do 255 J=l,MSIDE 
Z1=GRID(I,J) 
if (Zl.lt.ZMIS) goto 255 
do 245 K=l,MSIDE 

do 245 L=l,MSIDE 
Z2=GRID(K,L) 



if (Z2.1t.ZMIS) goto 245 
Xl=float(I)                                     j 
X2=float(K) 
Yl=float(J) 
Y2=float(L) 
D=sqrt((X1-X2)**2+(Y1-Y2)**2) 
LAG=int(D)+1 
WLAG(LAG)=WLAG(LAG)+D 
GAM(LAG)=LAG(LAG) + (Z1-Z2) **2 
WT(LAG)=WT(LAG)+1.0 

"          245 continue 
255 continue 

ANGLE=0.0 
do 270 I=1,MAXLAG 

WLAG(I)»WLAG(I)/WT(I) 
GAM(I)=0.5*GAM(I)/WT(I) 
write (LP,275) WLAG(I),ANGLE,GAM(I),WT(I) 

270 continue 
B          275 format (2x,f7.2,f6.2,f12.5,f10.1) 
1          300 continue 

stop 

■        C 
end 

FUNCTION CYNPUT(IN) 
Q    ***•* ' READS A REAL NUMBER FROM AN 80-BYTE RECORD IN FREE FORMAT 

DIMENSION K(80),NUM(10) 
DATA NUM/1H0,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/               1 
DATA INOLD,N,IFL,NPLUS/MINUS7NDOT/0/81/0,1H+,1H-/1H./           | 
CYNPUT=-0.0                                                       ! 
IF(INOLD.EQ.IN.AND. N.LE.80) GOTO 20                             j 

■            5 IF(IFL.NE.O) RETURN                                 . -           1 
INOLD=IN                                                         j 
READ(IN,10) (K(I),1=1,80)                                       ' [ 

1            10 FORMAT(80A1) 
15 N=l 

-           20 IF(N.GT.80) GOTO 35 
DO 30 I=N,80 

II=K(I) 
DO 25 J=l,10                                                   ! 

IF(II.EQ.NUM(J)) GOTO 40 
I            25 CONTINUE 

IF(II.EQ.MINUS) GOTO 40 
IF(II.EQ.NDOT) GOTO 40 

H IF(II.EQ.NPLUS) GOTO 40 
30 CONTINUE 
35 GOTO 5 

1            40 SIGN=1.0 
IF(II.EQ.MINUS) SIGN=-1.0 
IF(II.EQ.MINUS .OR. II.EQ.NPLUS) 1=1+1 
IF(I.GT.80) GOTO 60 
DO 55 N=I,80 

NN=K(N) 
IF(NN.EQ.NDOT)GOTO 70 
DO 45 J=l,10 

KK=J-1 
IF(NN.EQ.NUM(J)) GOTO 50 

■            45 CONTINUE 
GOTO 65 

50 CYNPUT=10.0*CYNPUT+KK 
■            55 CONTINUE 
|           60 N=82 

65 CYNPUT=SIGN*CYNPUT 
RETURN 

I           70 I=N+1 



TENS=1.0 
IF(I.GT.80) GOTO 90 
DO 85 N=I,80 

NN=K(N) 
DO 75 J=l,10 

KK=J-1 
IF(NN.EQ.NUM(J)) GOTO 80 

75   CONTINUE 
GOTO 65 

80   TENS=TENS*0.1 
CYNPUT=CYNPUT+TENS * KK 

85 CONTINUE 
90 N=82 

GOTO 65 
END 

44C **** PROGRAM TO COMPUTE MOVING VARIANCES FOR SQUARES 
C      OF VARIOUS SIZES 
C **** R WEBSTER    ROTHAMSTED 
C     Latest version 22 July 1999 
C 
C    This program was written as part of US project 
C    and may be handed over to TEC. 
C 
C Program reads data on a grid with X and Y coordinates 
C and converts them to an array for the selected variate 
C with implied coordinates. 

DIMENSION ZK(190,189), ZA(30), VM(190,189) , AM(190,189) 
C **** ZK( , ) will hold grid of data. 

character*72 TITLE(2) 
character*72 INFILE, OP12, IN11, FDAT . . 
data MAXROW, MAXCOL/190,189/ 
data IN,INDAT/LP/10,11,12/ 
PRINT * ,  'WHAT IS THE NAME OF THE STEERING FILE ?' 
READ (5,'(A)') INFILE 
OPEN (INDAT,FILE=INFILE,STATUS='OLD') 
print * , 'WHAT IS THE NAME OF THE DATA FILE ? ' 
read (5,'(a)•) IN11 
open (IN,file=INll,status='OLD') 
PRINT *,'WHAT DO YOU WANT TO CALL THE MAIN OUTPUT FILE ?' 
READ (5,'(A)') OP12 
OPEN (LP,FILE=OP12,STATUS='NEW') 

C      PRINT *,'WHAT DO YOU WANT TO CALL THE SECOND RESULTS FILh 
C      READ (5,'(A)') OP12 
C      OPEN (LF8,FILE=OP12,STATUS='NEW) 

READ (INDAT,10) TITLE 
WRITE (LP,10) TITLE 

C      WRITE (LF8,12) TITLE 
10 FORMAT (A) 

NVAR  = int(CYNPUT(INDAT)+0.1) 
NSEL  = int(CYNPUT(INDAT)+0.1) 
MSIDE = int(CYNPUT(INDAT)+0.1) 
ZMIS  = CYNPUT(INDAT) 
ILOG  = int(CYNPUT(INDAT)+0.1) 
if (ILOG.eq.l) SHIFT=CYNPUT(INDAT) 

C **** NVAR is number of variates in file._ 
C      NSEL is the one selected for analysis. 
C      MSIDE is the side of the square within which 
C averages are computed. 
C      ZMIS is the value used for missing or blank. 
C      ILOG = 1 to transform to log to base 10. 
C      SHIFT is a value to be added to data to shift the origin 
C before taking logarithms. 
C **** set data grid to blank 

9 I 


